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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.
Satisfy the physics to the largest extent.
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation
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Discrete
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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Distributed Optimization

ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.

Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the
computational graph.

mpi bcast, mpi sum, mpi send, mpi recv, mpi halo exchange, ...
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Automatic Differentiation: Forward-mode and
Reverse-mode
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What is the Appropriate Model for Inverse Problems?

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
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Granularity of Automatic Differentiation
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Inverse Modeling of the Stokes Equation

The governing equation for the Stokes problem

−ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

The weak form is given by

(ν∇u,∇v)− (p,∇ · v) = (f , v)

(∇ · u, q) = 0
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Inverse Modeling of the Stokes Equation

nu = Variable(0.5)

K = nu*constant(compute fem laplace matrix(m, n, h))

B = constant(compute interaction matrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

# Impose boundary conditions

bd = bcnode("all", m, n, h)

bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem impose Dirichlet boundary condition1(Z, bd, m, n, h)

# Calculate the source term

F1 = eval f on gauss pts(f1func, m, n, h)

F2 = eval f on gauss pts(f2func, m, n, h)

F = compute fem source term(F1, F2, m, n, h)

rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
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Inverse Modeling of the Stokes Equation

The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx])^2)

g = gradients(loss, nu)

Optimization with a one-liner:

BFGS!(sess, loss)
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Learning spatially-varying physical parameters using deep
neural networks

It is easy to adopt ADCME for modeling spatially-varying physical
parameters using deep neural networks with a PDE solver.

DNN + PDE + Data = Physics Constrained Data-driven Modeling

Deep Neural Network PDE Solver Observation

Loss Function

Spatially-varying 
Physical Fields

Gradient Back-propagation

Forward Computation
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Linear Elasticity

DNN + Linear Elasticity + Displacement Data

σij ,j + bi = 0, x ∈ Ω

εij =
1

2
(uj ,i + ui ,j), x ∈ Ω

σij = λδijεkk + µ(εij + εji ), x ∈ Ω

σijnj = tj , x ∈ ΓN ; ui = (u0)i , x ∈ ΓD

λ =
Eν

(1 + ν)(1− 2ν)
µ =

Eν

1− ν2
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Stokes’ Problem

DNN + Stokes’ Problem + Pressure Data

−∇ · (ν∇u) +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω
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Hyperelasticity

DNN + Hyperelasticity + Displacement Data

min
u
ψ =

µ

2
(Ic − 2)− µ

2
log(J) +

λ

8
log(J)2

F =I +∇u, C = FTF , J = det(C ), Ic = trace(C )

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
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Burgers’ Equation

DNN + Burgers’ Equation + Velocity Data

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ∇ · (ν∇u)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ∇ · (ν∇v)

(x , y) ∈ Ω, t ∈ (0,T )
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Navier-Stokes Equation

Steady-state Navier-Stokes equation

(u · ∇)u = −1

ρ
∇p +∇ · (ν∇u) + g

∇ · u = 0

Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.
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Navier-Stokes Equation
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Navier-Stokes Equation

Data: (u, v)

Unknown: ν(x) (represented by a deep neural network)

Prediction: p (absent in the training data)

The DNN provides regularization, which generalizes the estimation
better!
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ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.
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NNFWI: Neural-network-based Full-Waveform Inversion

Estimate velocity models from seismic observations.

∂2u

∂t2
= ∇·(m2∇u)+f
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NNFWI: Neural-network-based Full-Waveform Inversion

Inversion results with a noise level σ = σ0

Inversion results for the same loss function value:
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ADSeismic.jl: Performance Benchmark

Performance is a key focus of ADCME.

ADCME enables us to utilize heterogeneous (CPUs, GPUs, and
TPUs) and distributed (CPU clusters) computing environments.
Fortran: open-source Fortran90 programs SEISMIC CPML
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Constitutive Modeling
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Poroelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

(
k

Bf µ
∇p

)
= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σn, εn) + Hεn+1
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Poroelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε

ADCME ML for Computational Engineering 36 / 40



Poroelasticity
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A Paradigm for Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (2)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint

State Method
c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ NNw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning (PCL)
f (u) ≈ NNw (u)

∇ · ($∇u(x)) = 0 Stochastic Inverse Problem
Physical Generative Neural Networks

(PhysGNN)
$ = NNw (vlatent)
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A General Approach to Inverse Modeling
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Reference

Methodology and Implementation:

Physics Constrained Learning for Data-driven Inverse Modeling from
Sparse Observations (Core techniques!)
A General Approach to Seismic Inversion with Automatic
Differentiation
Time-lapse Full-waveform Inversion for Subsurface Flow Problems with
Intrusive Automatic Differentiation

Consistutive Modeling:

Learning Constitutive Relations from Indirect Observations Using Deep
Neural Networks
Learning Constitutive Relations using Symmetric Positive Definite
Neural Networks
Inverse Modeling of Viscoelasticity Materials using Physics Constrained
Learning

Learning Spatially-varying Fields:

Solving Inverse Problems in Steady State Navier-Stokes Equations
using Deep Neural Networks
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