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Inverse Modeling
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mgin Lp(up) s.t. Fp(0,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uyps, €.g., Lp(up) = ||up — uobs||§.

@ 6 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for up may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up) s.t. Fp(fiup) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
@ Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
° ...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

m@in Lh(Uh) S.t. Fh(/V/Vg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

mein Lh(uh) s.t. Fh(e, uh) =0 (1)

e We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction g¥
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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Automatic Differentiation: Forward-mode and
Reverse-mode
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What is the Appropriate Model for Inverse Problems?

@ In general, for a function f: R” — R™

Mode Suitable for ... Complexity! Application
Forward m>n <250PS(flx)) UQ
Reverse m<n < 4 OPS(f(x)) Inverse Modeling

@ There are also many other interesting topics

e Mixed mode AD: many-to-many mappings.
e Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.
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Granularity of Automatic Differentiation

Operator
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Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=f in Q
V-u=0 in Q
u=0 onoQ

@ The weak form is given by

(vVu,Vv)—(p,V-v) =
(V " u, q)

()
0
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Inverse Modeling of the Stokes Equation

K = nuxconstant (compute_fem_laplace_matrix(m, n, h))
B = constant(compute_interaction_matrix(m, n, h))
Z = [K -B'

-B spdiag(zeros(size(B,1)))]

# Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1D)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem_impose_Dirichlet_boundary_conditionl(Z, bd, m, n, h)

# Calculate the source term

F1 = eval_f_on_gauss_pts(f1func, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem_source_term(F1, F2, m, n, h)
rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
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Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!
loss = sum((sol[idx] - observation[idx])~2)

g = gradients(loss, nu)

@ Optimization with a one-liner:

BFGS! (sess, loss)

PoreFlow/ADCME Simulation Program
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@ Applications
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Linear Poroelasticity

@ The governing equation for linear poroelasticity with a
spatially-varying viscosity coefficient

dive + pg =u
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Linear Poroelasticity

@ The true model of 7(y)~!, the displacement at the terminal time, and
the von Mises stress distribution at the terminal time.

@ Evolution of learned 77(y)_1 at iteration 0, 80, 160, and 240.

E5EEoEc
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Viscoelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

dive(u) — bVp=0
19p | Oe,u) k B

o =o(e€)

@ Approximate the constitutive relation by a neural network
o_n+1 :NJ\[Q(U”,Gn) + H€n+1
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Viscoelasticity

@ Comparison with space varying linear elasticity approximation

o = H(x y)e
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Viscoelasticity
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Navier-Stokes Equation

@ Steady-state Navier-Stokes equation
1
(u-Viu= —;Vp—k V-wVu)+g
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.
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Navier-Stokes Equation
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Navier-Stokes Equation

e Data: (u,v)

e Unknown: v(x) (represented by a deep neural network)

@ Prediction: p (absent in the training data)
@ The DNN provides regularization, which generalizes the estimation

better!
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A General Approach to Inverse Modeling

i Data " Deep Neural Networks | plll'ﬂ"llw

. H
l[”=_ & fr'r,—_rﬁ_ﬁ_ PoreFlow.jl
- - / Geomechanics
Viscoelasticity
H Multiphase Flow
Multiphysics

* coming soon

FwiFlow.jl 4 -

Multiphase Flow .j
Nonlocal Operators M )
hitps:/github.com/lidongzh/FwiFlowjl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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