Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu, Weigiang Zhu, and Eric Darve
https://github.com/kailaix/ADCME. j1

ADCME ML for Computational Engineering 1/28

https://github.com/kailaix/ADCME.jl

Outline

© Inverse Modeling

ADCME ML for Computational Engineering 2 /28

Inverse Modeling

Forward Problem

Prediction
— | Physical Laws | —> of
Observations

Model
Parameters

Inverse Problem

Estimation
Observations | = | Physical Laws | —» of
Parameters

ADCME ML for Computational Engineering 3/28

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mgin Lp(up) s.t. Fp(0,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uyps, €.g., Lp(up) = ||up — uobs||§.

@ 6 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for up may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME ML for Computational Engineering 4 /28

Function Inverse Problem

mfin Lp(up) s.t. Fp(fiup) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
@ Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
° ...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering 5/28

Machine Learning for Computational Engineering

m@in Lh(Uh) S.t. Fh(/V/Vg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.

Data

— 2,
Uy = CTUy

First Principles Numerical Schemes
Inverse Modeling Neural Networks

ADCME ML for Computational Engineering 6 /28

Gradient Based Optimization

mein Lh(uh) s.t. Fh(e, uh) =0 (1)

e We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction g¥

9k+1 ng_agk

Update
Model Parameters|

Calculate
Gradients

(="

Loss Function —— Calibrated Model

/ \ < tol?
Predicted Observed
Data Data

T
Initial and
Boundary Conditions

ADCME ML for Computational Engineering 7 /28

Outline

© Automatic Differentiation

ADCME ML for Computational Engineering 8 /28

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.

Neural Network Layers

) ‘o o o
Mathematical Fact o O o'
) 220 2220 2 0 2o () = ()
) fo0 O O
Back-propagation fo O o '

‘ | " onyses Numercal Operatons. ;
1 Physics Numerical Operations H A

Reverse-mode
Automatic Differentiation

! | V
<t < < <
H parameter| ~iy [| =5 [ZU5] S5 ('simuiation) < (Observation)

Discrete 3 D s Forar cauon
.. i L
Adjoint-State Method ‘ ’

ADCME ML for Computational Engineering

9/ 28

Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

ntl _ gn 1 RV ST)
ST =SH -V (m2<SZ)KV‘!’Z) Ar=| g5 +q At

my(S5+h)

ADCME ML for Computational Engineering 10 / 28

ADCME: Computational-Graph-based Numerical
Simulation

ADCME
Computational Graph

Custom Optimizers Output ,'"'J Custom Operators
CustomOptimizer H customop()
BFGS cuba &

Gradient -]
Ipopt Fortran Kernel -
pop _ I
NLopt Checkpointing

FPGA

MUMPS Parallel Solver

- i 2
W/

... Input

OOOOOO

—} Numerical PDE Schemes, Linear Solvers, Arithmetic Operations, Optimization Solvers, Neural Networks, ...

DCME ML for Computational Engineering 11 /28

Automatic Differentiation: Forward-mode and
Reverse-mode

Loss

Intermediate

Values |:>

Inputs

Reverse Mode Automatic Differentiation

£ i 00

Forward Mode Automatic Differentiation

ADCME ML for Computational Engineering 12 /28

What is the Appropriate Model for Inverse Problems?

@ In general, for a function f: R” — R™

Mode Suitable for ... Complexity! Application
Forward m>n <250PS(flx)) UQ
Reverse m<n < 4 OPS(f(x)) Inverse Modeling

@ There are also many other interesting topics

e Mixed mode AD: many-to-many mappings.
e Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.

ADCME ML for Computational Engineering 13 /28

Granularity of Automatic Differentiation

Operator

z=x*y y=A*x y = compute_fem_
Z=X+y y=A\x stiffness_matrix(x, mesh)
Granularity Arithmetic Tensor
TAPENADE

Simulation
O PyTorch
MeDiPack
Adept
CoDiPack

L

OpenVFOAM
@@ 5w

code
<L dolfin-adjoint

ML for Computational Engineering

Dac

14 / 28

Outline

© Code Example

ADCME ML for Computational Engineering 15 / 28

Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=f in Q
V-u=0 in Q
u=0 onoQ

@ The weak form is given by

(vVu,Vv)—(p,V-v) =
(V " u, q)

()
0

ADCME ML for Computational Engineering 16 / 28

Inverse Modeling of the Stokes Equation

K = nuxconstant (compute_fem_laplace_matrix(m, n, h))
B = constant(compute_interaction_matrix(m, n, h))
Z = [K -B'

-B spdiag(zeros(size(B,1)))]

Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1D)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem_impose_Dirichlet_boundary_conditionl(Z, bd, m, n, h)

Calculate the source term

F1 = eval_f_on_gauss_pts(f1func, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem_source_term(F1, F2, m, n, h)
rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
ADCME ML for Computational Engineering 17 / 28

Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!
loss = sum((sol[idx] - observation[idx])~2)

g = gradients(loss, nu)

@ Optimization with a one-liner:

BFGS! (sess, loss)

PoreFlow/ADCME Simulation Program

ADCME ML for Computational Engineering 18 / 28

Outline

@ Applications

ADCME ML for Computational Engineering 19 /28

Linear Poroelasticity

@ The governing equation for linear poroelasticity with a
spatially-varying viscosity coefficient

dive + pg =u

. g - -

Traction-free

w_y N\

dint

\.

b

BSSNNNNN

AAAAAAAAAAA

ADCME ML for Computational Engineering 20 / 28

Linear Poroelasticity

@ The true model of 7(y)~!, the displacement at the terminal time, and
the von Mises stress distribution at the terminal time.

@ Evolution of learned 77(y)_1 at iteration 0, 80, 160, and 240.

E5EEoEc

ADCME ML for Computational Engineering 21 /28

Viscoelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

dive(u) — bVp=0
19p | Oe,u) k B

o =o(e€)

@ Approximate the constitutive relation by a neural network
o_n+1 :NJ\[Q(U”,Gn) + H€n+1

Fixed Pressure Sensors
p=0 .
/\ g g
Traction-free o _fow > < No-flow y
LR »_ " <, -
on E=O B Injection Production |q o - | | N
v No-flow B
P Finite Element

—=0
on Finite Volume Cell

ADCME ML for Computational Engineering 22 /28

Viscoelasticity

@ Comparison with space varying linear elasticity approximation

o = H(x y)e

0150
0.150 0.150

0125 0125 0125

0100 0.100 0.100

0.075 0.075 0.075

0.050 0.050 0.050

0025 o.025 0.025

0.000 0.000 0000

Space Varying
Linear Elasticity

NN True

ADCME ML for Computational Engineering 23 /28

Viscoelasticity

60 000000

| 2 .
| o © oo
= ﬂ] 00%0 ©° ° ° 4
g - 0°° o _©
g 2 3 00000%0°%0°0 o
g &1 P °
4 i s
a | o, e
%%y 3
-6 oTsvzo-P- o s ©
° 06,2090000000080°%,......°
" o ° o
0 02 04 06 08 1 0 02 04 06 08 1
Time Time

(a) Space Varying Linear Elasticity

102
00000000000 25
o
2
-
g 2 15
1]
2 2 1
g
0.5
° oo 0 O'o.
—6 | ®ce00000 oGy 56T 8TOTOD
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time

(b) NN-based Viscoelasticity

ADCME ML for Computational Engineering 24 /28

Navier-Stokes Equation

@ Steady-state Navier-Stokes equation
1
(u-Viu= —;Vp—k V-wVu)+g
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.

ADCME ML for Computational Engineering 25 /28

Navier-Stokes Equation

Coordinates x \ Physical Fields
Deep Neural Network Approximation

FFW’@

~ Gradient

%‘Back-pmpagation

1
(u-V)u:—;Vp+V-(vVu)+g
V-u=0

V1

Physical Laws
Navier Stokes Equation

¥ —

Observations

Predictions

ADCME

Coordinates () Neural Network
\7/\ Weights and Biases
Boundary
Conditions /| Neural Network
d

Viscosity

w o i
O Newton’s Iteration

u? lt WL = g — 1

o
@ 1
@)

“ 4~ Forward Computation
4

—— Gradient Backpropagation

i

Loss Function

ML for Computational Engineering 26 / 28

Navier-Stokes Equation

e Data: (u,v)

e Unknown: v(x) (represented by a deep neural network)

@ Prediction: p (absent in the training data)
@ The DNN provides regularization, which generalizes the estimation

better!

reference

6 0.2

0.25 0.50 0.75
X

Pressure
(absent in the
training data)

02
0.4

>
06
08

ADCME

DNN estimation

0.25 0.50 0.75
X

DNN difference

pointwise difference

02

0.4
>
06

0.8

-20

0.25 0.50 0.75 0.25 050 0.75
x x

ML for Computational Engineering

pointwise estimation

‘ — DNN
pointwise
N
\
0 20000 40000

number of iterations

27 / 28

A General Approach to Inverse Modeling

i Data " Deep Neural Networks | plll'ﬂ"llw

. H
l[”=_ & fr'r,—_rﬁ_ﬁ_ PoreFlow.jl
- - / Geomechanics
Viscoelasticity
H Multiphase Flow
Multiphysics

* coming soon

FwiFlow.jl 4 -

Multiphase Flow .j
Nonlocal Operators M)
hitps:/github.com/lidongzh/FwiFlowjl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl

ADCME ML for Computational Engineering 28 /28

	Inverse Modeling
	Automatic Differentiation
	Code Example
	Applications

