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This work (ADCME.jl and its ecosystem) is a result of collective efforts of
many of my Ph.D. collaborators together with our faculty advisors. In
chronological order they are:

Ph.D. collaborators: Daniel (Zhengyu) Huang, Dongzhuo Li,
Weiqiang Zhu, and Tiffany (Li) Fan.
Faculty supervisors: Eric Darve, Charbel Farhat, Jerry M. Harris, and
Gregory C. Beroza.
Many other fellow researchers from Julia language and scientific
computing communities, who provide valuable inputs.
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Inverse Modeling

Inverse modeling (逆建模) identifies a certain set of parameters or
functions with which the outputs of the forward analysis matches the
desired result or measurement.
Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖22.
θ is the model parameter to be calibrated.
The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?
Koopman operator in dynamical systems.
Constitutive relations in solid mechanics.
Turbulent closure relations in fluid mechanics.
...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.
Satisfy the physics to the largest extent.
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk

Predicted  
Data

Observed  
Data

Loss Function

Calculate 
Gradients

Update  
Model Parameters

PDE

Initial and  
Boundary Conditions

Optimizer

< tol?
Calibrated Model

ADCME Physics Based Machine Learning 10 / 40



Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.
Many scientific computing
algorithms are iterative or
implicit in nature ⇒ Physics
Constrained Learning (PCL)

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , y
k)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c
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Example

An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F (x , y) = x3 − (y3 + y) = 0;
treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0⇒ y ′(x) =
3x2

3y2 + 1

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)
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Scientific Machine Learning Inverse Modeling Toolkit

High Performance

Solves large-scale prob-
lems with TensorFlow
backend and MPI-based
distributed optimization
for scientific computing.

Easy to Use

Provides high-level syn-
tax, which is compati-
ble with Julia syntax, for
implementing numerical
schemes.

Broad Applicability

Constructs multiple
physical models using
toolkits from ADCME
ecosystem and extends
capabilities by custom
operators.ADCME Physics Based Machine Learning 15 / 40



ADCME Architecture

Targeting at scientific computing:
Sparse linear algebra;
MPI-based distributed computing;
Domain specific numerical schemes: seismic inversion (ADSeismic.jl),
fluid dynamics (FwiFlow.jl), geomechanics (PoreFlow.jl), solid
mechanics (NNFEM.jl), . . .
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Distributed Optimization

ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.
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Estimating Coefficients from Data using ADCME

−bu′′(x) + u(x) = f (x), x ∈ [0, 1], u(0) = u(1) = 0

f (x) = 8+ 4x − 4x2

Data: u(0.5) = 1
Finite difference:

−bui+1 + ui−1 − 2ui
h2

+ ui = f (xi )

Bu = f

1 Compute ui as a function of b;
2 Minimize (uk − u(0.5))2, here xk = 0.5.
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Estimating Coefficients from Data using ADCME
using LinearAlgebra
using ADCME

n = 101 # number of grid nodes in [0,1]
h = 1/(n-1)
x = LinRange(0,1,n)[2:end-1]

b = Variable(10.0)
A = diagm(0=>2/h^2*ones(n-2),

-1=>-1/h^2*ones(n-3), 1=>-1/h^2*ones(n-3))
B = b*A + I # I stands for the identity matrix
f = @. 4*(2 + x - x^2)
u = B\f # solve the equation using built-in linear solver
ue = u[div(n+1,2)] # extract values at x=0.5
loss = (ue-1.0)^2

# Optimization
sess = Session(); init(sess)
BFGS!(sess, loss)

println("Estimated b = ", run(sess, b))
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Domain Specific Numerical Schemes

−∇ · (κ∇u) = f , u|∂Ω = 0

Weak form ∫
Ω
κ∇u · ∇vdx =

∫
Ω
fvdx

The variational problem is transcribed into numerical simulation using
domain specific implementations from PoreFlow.jl:

A = constant(compute_fem_laplace_matrix1(kappa, m, n, h))
F = eval_f_on_gauss_pts(f, m, n, h)
bd = bcnode("all", m, n, h)
A, _ = fem_impose_Dirichlet_boundary_condition1(A, bd,

m, n, h)
rhs = compute_fem_source_term1(F, m, n, h)
rhs[bd] .= 0.0
sol = A\rhs
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A General Approach to Inverse Modeling
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ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.
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ADSeismic.jl: Earthquake Location Example

The earthquake source function is parameterized by (g(t) and x0 are
unknowns)

f (x , t) =
g(t)

2πσ2
exp

(
−||x − x0||2

2σ2

)

ADCME Physics Based Machine Learning 24 / 40



ADSeismic.jl: Benchmark

ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.
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NNFWI: Neural-network-based Full-Waveform Inversion

Estimate velocity models from seismic observations.

∂2u

∂t2
= ∇·(m2∇u)+f
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NNFWI: Neural-network-based Full-Waveform Inversion

Inversion results with a noise level σ = σ0

Inversion results for the same loss function value:
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Constitutive Modeling
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NNFEM.jl: Constitutive Modeling

σij ,j︸︷︷︸
stress

+ρ bi︸︷︷︸
external force

= ρ üi︸︷︷︸
velocity

εij︸︷︷︸
strain

=
1
2
(uj ,i + ui ,j)

(2)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui ); density ρ is known.
Unobservable: stress σij .
Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress =Mθ(strain, . . .) (3)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robust Constitutive Modeling

Proper form of constitutive relation is crucial for numerical stability

Elasticity⇒ σ = Cθε

Hyperelasticity ⇒

{
σ =Mθ(ε) (Static)
σn+1 = Lθ(ε

n+1)Lθ(ε
n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =


L1111
L2211 L2222
L3311 L3322 L3333

L2323
L1313

L1212


Weak convexity: LθLTθ � 0
Time consistency: σn+1 → σn when εn+1 → εn
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NNFEM.jl: Robust Constitutive Modeling

Weak form of balance equations of linear momentum

Pi (θ) =

∫
V

ρüiδuidVt +

∫
V

σij(θ)︸ ︷︷ ︸
embedded neural network

δεijdV

Fi =

∫
V

ρbiδuidV +

∫
∂V

tiδuidS

Train the neural network by

L(θ) = min
θ

N∑
i=1

(Pi (θ)− Fi )
2

The gradient ∇L(θ) is computed via automatic differentiation.
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NNFEM.jl: Robust Constitutive Modeling
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NNFEM.jl: Robust Constitutive Modeling

Comparison of different neural network architectures

σn+1 = Lθ(εn+1, εn,σn)Lθ(εn+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(ε
n+1, εn,σn)

σn+1 = NNθ(ε
n+1, εn,σn) + σn
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PoreFlow.jl: FEM/FVM on Structured Grids

Steady-state Navier-Stokes equation

(u · ∇)u = −1
ρ
∇p +∇ · (ν∇u) + g

∇ · u = 0

Inverse problem are ubiquitous in fluid dynamics:

图: Left: electronic cooling; right: nasal drug delivery.
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PoreFlow.jl: FEM/FVM on Structure Grids

Boundary
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Neural Network
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Coordinates

𝑢𝑛+1 = 𝑢𝑛 − 𝐽−1𝐹𝑛
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PoreFlow.jl: FEM/FVM on Structure Grids

Data: (u, v)
Unknown: ν(x) (represented by a deep neural network)
Prediction: p (absent in the training data)
The DNN provides regularization, which generalizes the estimation
better!

ADCME Physics Based Machine Learning 36 / 40



Outline

1 Inverse Modeling

2 Methodology

3 Applications

4 Some Perspectives

ADCME Physics Based Machine Learning 37 / 40



A Parameter/Function Learning View of Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (4)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem Discrete Adjoint
State Method

c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem Neural Network
Functional Approximator f (x) ≈ fw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem Residual Learning
Physics Constrained Learning f (u) ≈ fw (u)

∇ · ($∇u(x)) = 0 Stochastic Inverse Problem Generative Neural Networks $ = fw (vlatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

1 Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

2 Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.

1 The AD technique is not new; it has existed for several decades and many software exists.
2 The advent of deep learning drives the development of robust, scalable and flexible AD

software that leverages the high performance computing environment.
3 As deep learning techniques continue to grow, crafting the tool to incorporate machine

learning and AD techniques for inverse modeling is beneficial in scientific computing.
4 However, AD is not a panacea. Many scientific computing algorithms cannot be directly

expressed by composition of differentiable operators.
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