
Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu, and Eric Darve
https://github.com/kailaix/ADCME.jl

ADCME ML for Computational Engineering 1 / 40

https://github.com/kailaix/ADCME.jl

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Code Example

4 Applications

ADCME ML for Computational Engineering 2 / 40

Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t

Physical
Properties

Physical
Laws

Predictions
(Observations)

Inverse
Modeling

……

Optimal Control

Predictive Modeling

Discover Physics

Reduced Order Modeling

ADCME ML for Computational Engineering 3 / 40

Inverse Modeling

Forward Problem

Inverse Problem

Model
Parameters

Observations

Physical Laws

Physical Laws
Estimation

of
Parameters

Prediction
of

Observations

ADCME ML for Computational Engineering 4 / 40

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME ML for Computational Engineering 5 / 40

Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering 6 / 40

Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.
Satisfy the physics to the largest extent.

ADCME ML for Computational Engineering 7 / 40

Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

< tol?
Calibrated Model

ADCME ML for Computational Engineering 8 / 40

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Code Example

4 Applications

ADCME ML for Computational Engineering 9 / 40

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method

ADCME ML for Computational Engineering 10 / 40

Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn2) − ∇ ⋅ (m2(Sn+1

2)K ∇Ψn2) Δt = (qn2 + qn1
m2(Sn+12)
m1(Sn+12)) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2

ADCME ML for Computational Engineering 11 / 40

ADCME: Computational-Graph-based Numerical
Simulation

ADCME ML for Computational Engineering 12 / 40

Distributed Optimization

ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.

Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the
computational graph.

mpi bcast, mpi sum, mpi send, mpi recv, mpi halo exchange, ...

ADCME ML for Computational Engineering 13 / 40

Automatic Differentiation: Forward-mode and
Reverse-mode

ADCME ML for Computational Engineering 14 / 40

What is the Appropriate Model for Inverse Problems?

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
ADCME ML for Computational Engineering 15 / 40

Granularity of Automatic Differentiation

ADCME ML for Computational Engineering 16 / 40

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Code Example

4 Applications

ADCME ML for Computational Engineering 17 / 40

Inverse Modeling of the Stokes Equation

The governing equation for the Stokes problem

−ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

The weak form is given by

(ν∇u,∇v)− (p,∇ · v) = (f , v)

(∇ · u, q) = 0

ADCME ML for Computational Engineering 18 / 40

Inverse Modeling of the Stokes Equation

nu = Variable(0.5)

K = nu*constant(compute fem laplace matrix(m, n, h))

B = constant(compute interaction matrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

Impose boundary conditions

bd = bcnode("all", m, n, h)

bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem impose Dirichlet boundary condition1(Z, bd, m, n, h)

Calculate the source term

F1 = eval f on gauss pts(f1func, m, n, h)

F2 = eval f on gauss pts(f2func, m, n, h)

F = compute fem source term(F1, F2, m, n, h)

rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
ADCME ML for Computational Engineering 19 / 40

Inverse Modeling of the Stokes Equation

The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx])^2)

g = gradients(loss, nu)

Optimization with a one-liner:

BFGS!(sess, loss)

ADCME ML for Computational Engineering 20 / 40

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Code Example

4 Applications

ADCME ML for Computational Engineering 21 / 40

Learning spatially-varying physical parameters using deep
neural networks

It is easy to adopt ADCME for modeling spatially-varying physical
parameters using deep neural networks with a PDE solver.

DNN + PDE + Data = Physics Constrained Data-driven Modeling

Deep Neural Network PDE Solver Observation

Loss Function

Spatially-varying
Physical Fields

Gradient Back-propagation

Forward Computation

ADCME ML for Computational Engineering 22 / 40

Linear Elasticity

DNN + Linear Elasticity + Displacement Data

σij ,j + bi = 0, x ∈ Ω

εij =
1

2
(uj ,i + ui ,j), x ∈ Ω

σij = λδijεkk + µ(εij + εji), x ∈ Ω

σijnj = tj , x ∈ ΓN ; ui = (u0)i , x ∈ ΓD

λ =
Eν

(1 + ν)(1− 2ν)
µ =

Eν

1− ν2

ADCME ML for Computational Engineering 23 / 40

Stokes’ Problem

DNN + Stokes’ Problem + Pressure Data

−∇ · (ν∇u) +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

ADCME ML for Computational Engineering 24 / 40

Hyperelasticity

DNN + Hyperelasticity + Displacement Data

min
u
ψ =

µ

2
(Ic − 2)− µ

2
log(J) +

λ

8
log(J)2

F =I +∇u, C = FTF , J = det(C), Ic = trace(C)

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

ADCME ML for Computational Engineering 25 / 40

Burgers’ Equation

DNN + Burgers’ Equation + Velocity Data

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ∇ · (ν∇u)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ∇ · (ν∇v)

(x , y) ∈ Ω, t ∈ (0,T)

ADCME ML for Computational Engineering 26 / 40

Navier-Stokes Equation

Steady-state Navier-Stokes equation

(u · ∇)u = −1

ρ
∇p +∇ · (ν∇u) + g

∇ · u = 0

Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.

ADCME ML for Computational Engineering 27 / 40

Navier-Stokes Equation

Boundary
Conditions

Neural Network
Weights and Biases

Neural Network

Viscosity

Coordinates

𝑢𝑛+1 = 𝑢𝑛 − 𝐽−1𝐹𝑛
Newton’s Iteration

𝑢1

𝑢2

𝑢3

𝑢4

Loss Function

Forward Computation

Gradient Backpropagation

ADCME ML for Computational Engineering 28 / 40

Navier-Stokes Equation

Data: (u, v)

Unknown: ν(x) (represented by a deep neural network)

Prediction: p (absent in the training data)

The DNN provides regularization, which generalizes the estimation
better!

ADCME ML for Computational Engineering 29 / 40

ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.

ADCME ML for Computational Engineering 30 / 40

NNFWI: Neural-network-based Full-Waveform Inversion

Estimate velocity models from seismic observations.

∂2u

∂t2
= ∇·(m2∇u)+f

ADCME ML for Computational Engineering 31 / 40

NNFWI: Neural-network-based Full-Waveform Inversion

Inversion results with a noise level σ = σ0

Inversion results for the same loss function value:

ADCME ML for Computational Engineering 32 / 40

ADSeismic.jl: Performance Benchmark

Performance is a key focus of ADCME.

ADCME enables us to utilize heterogeneous (CPUs, GPUs, and
TPUs) and distributed (CPU clusters) computing environments.
Fortran: open-source Fortran90 programs SEISMIC CPML

ADCME ML for Computational Engineering 33 / 40

Constitutive Modeling

ADCME ML for Computational Engineering 34 / 40

Poroelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

(
k

Bf µ
∇p

)
= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σn, εn) + Hεn+1

Traction-free
∂u
∂n

= 0

No-flow
∂p
∂n

= 0

Fixed Pressure
p = 0

No-flow
∂p
∂n

= 0
No-flow
∂p
∂n

= 0 Injection Production

x

y

Finite Element
Finite Volume Cell

He1 He2

He3 He4

e

Sensors

ADCME ML for Computational Engineering 35 / 40

Poroelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε

ADCME ML for Computational Engineering 36 / 40

Poroelasticity

ADCME ML for Computational Engineering 37 / 40

A Paradigm for Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (2)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint

State Method
c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ NNw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning (PCL)
f (u) ≈ NNw (u)

∇ · ($∇u(x)) = 0 Stochastic Inverse Problem
Physical Generative Neural Networks

(PhysGNN)
$ = NNw (vlatent)

ADCME ML for Computational Engineering 38 / 40

A General Approach to Inverse Modeling

ADCME ML for Computational Engineering 39 / 40

Reference

Methodology and Implementation:

Physics Constrained Learning for Data-driven Inverse Modeling from
Sparse Observations (Core techniques!)
A General Approach to Seismic Inversion with Automatic
Differentiation
Time-lapse Full-waveform Inversion for Subsurface Flow Problems with
Intrusive Automatic Differentiation

Consistutive Modeling:

Learning Constitutive Relations from Indirect Observations Using Deep
Neural Networks
Learning Constitutive Relations using Symmetric Positive Definite
Neural Networks
Inverse Modeling of Viscoelasticity Materials using Physics Constrained
Learning

Learning Spatially-varying Fields:

Solving Inverse Problems in Steady State Navier-Stokes Equations
using Deep Neural Networks

ADCME ML for Computational Engineering 40 / 40

	Inverse Modeling
	Automatic Differentiation
	Code Example
	Applications

