
Actors.jl

Paul Bayer, 2021-07-01

- What are actors, where do they come from?

- How are they implemented in Julia?

- A quick demo, some first impressions!

- Why would you use them?

https://github.com/JuliaActors/Actors.jl

https://github.com/JuliaActors/Actors.jl

What are Actors?
Where do they come from

Alan Kay *:

• I thought of objects being like biological cells
and/or individual computers on a network,
only able to communicate with messages …

• OOP to me means only messaging, local
retention and protection and hiding of state-
process, and extreme late-binding of all
things.

1973 (Carl Hewitt) 1986 (Joe Armstrong et. al)* http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

** Joe Armstrong & Alan Kay - Joe Armstrong interviews Alan Kay

**

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de
https://www.youtube.com/watch?v=fhOHn9TClXY

The Actor Model
Carl Hewitt, 1973 ff

When an Actor receives a message, it can concurrently:

- send messages to ... addresses of Actors that it has;

- create new Actors;

- designate how to handle the next message it receives.*

and actors …

- come in systems (“one actor is no actor”) and

- scale in universality, space and number!
* https://hal.archives-ouvertes.fr/hal-01163534v7/document

** Hewitt, Meijer and Szyperski: The Actor Model

embody

- processing,

- storage,

- communication**

https://hal.archives-ouvertes.fr/hal-01163534v7/document
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask

Actors in Julia
complement Julia’s concurrency features

An Actors.jl actor

- is a persistent Task, which

- is represented by a message Channel,

- serves a Julia Function, (as a mutable behavior),

- has state (behavior and acquaintances),

- executes asynchronously when it receives a message,

- follows a messaging protocol,

- has an Erlang (GenServer) like API,

- is lightweight.

Actors.jl

Julia with Actors.jl
Actors integrate with Tasks + Distributed

With Actors.jl right now you can

- provide services to parallel Tasks and worker processes,

- implement concurrent applications and

- build fault-tolerant systems (with supervisors and monitors …),

They will (with some development) *

- communicate with other actor languages and

- integrate into microservices.

Actors.jl

* see: https://github.com/pbayer/erjulix

https://github.com/pbayer/erjulix

