
A differentiable N-body code for transit timing and 
dynamical modeling. I. Algorithm and derivatives.

Journal: Monthly Notices of the Royal Astronomical Society

Manuscript ID MN-21-1039-MJ

Manuscript type: Main Journal

Date Submitted by the 
Author: 22-Mar-2021

Complete List of Authors: Agol, Eric; University of Washington, Astronomy
Hernandez, David; Harvard-Smithsonian Center for Astrophysics, 
Astronomy
Langford, Zachary; University of Washington, Astronomy

Keywords: Planetary Systems, planets and satellites: dynamical evolution and 
stability < Planetary Systems

 



MNRAS 000, 1–22 (2020) Preprint 22 March 2021 Compiled using MNRAS LATEX style file v3.0

A differentiable N-body code for transit timing and dynamical
modeling. I. Algorithm and derivatives.

Eric Agol,1,2,3? David M. Hernandez,4,5 & Zachary Langford.1
1Astronomy Department, University of Washington, Seattle, WA 98195, USA
2Institut d’Astrophysique de Paris, 98bis Boulevard Arago, Paris 75014, France
3Guggenheim Fellow
4Harvard–Smithsonian Center for Astrophysics, 60 Garden St., MS 51, Cambridge, MA 02138, USA
5Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
When fitting N-body models to astronomical data – including transit times, radial velocity,
and astrometric positions at observed times – the derivatives of the model outputs with respect
to the initial conditions can help with model optimization and posterior sampling. Here we
describe a general-purpose symplectic integrator for arbitrary orbital architectures which we
have recast to maintain numerical stability and precision for small step sizes. We compute the
derivatives of the N-body coordinates and velocities as a function of time with respect to the
initial conditions and masses by propagating the Jacobian along with the N-body integration.
For the first time we obtain the derivatives of the transit times with respect to the initial
conditions and masses using the chain rule, which is quicker and more accurate than using
finite differences or automatic differentiation. We implement this algorithm in an open source
package, NbodyGradient.jl, written in the Julia language, which has been used in the
optimization and error analysis of transit-timing variations in the TRAPPIST-1 system (Agol
et al. 2021). We present tests of the accuracy and precision of the code, and show that it
compares favorably in speed to other integrators which are written in C.

Key words: Planetary systems; planets and satellites: dynamical evolution and stability

1 INTRODUCTION

The gravitational N-body problem refers to the integration of the
positions and velocities of a set of N point-particles forward or
backward in time using Newton’s equations, after specifying their
masses and initial phase-space coordinates. The solution of the
N-body problem can be put to many uses, for example, matching
observational data on a set of astronomical bodies, estimating the
long-term stability or sensitivity to initial conditions of a model
system, or determining the outcome of interactions between bodies.
For each of these applications, it is beneficial to be able to compute
the derivatives of the state of the system at a given time with re-
spect to the initial conditions and masses. This calculation can be
laborious, involving propagating derivatives through each time step
of an integration, but the result can be much more computationally
efficient and accurate relative to computing derivatives with finite
differences.

The calculation of derivatives of the N-body problem has been
investigated in prior work. Mikkola & Innanen (1999) and Rein &
Tamayo (2015) derive the variational equations of the symplectic
integrator of Wisdom & Holman (1991) to obtain the tangent map

? E-mail: agol uw.edu (EA)

of an N-body system as a function of time, from which the posi-
tional variations may be derived as a function of variations in the
initial phase-space coordinates. Second-order variational equations
were derived by Rein & Tamayo (2016) for a high-order integrator
assumed to exactly solve the N-body equations. Pál (2010) used
a Lie-integration scheme, including derivatives with respect to the
initial orbital elements and masses, to fit for planet-planet perturba-
tions in radial-velocity detected systems.

1.1 Algorithm

The purpose of this paper is to implement first-order derivatives in a
symplectic integrator, including the mass derivatives, and allowing
for a system hierarchy which is more general than standard symplec-
tic integrators, and which includes derivatives of the transit times
with respect to the initial conditions, which is currently absent in the
literature. Instead of using the variational equations, which assume
exact solution of the N-body problem for obtaining the derivatives,
we compute the derivatives of the N-body symplectic map, with the
goal of yielding a more precise result for the Jacobian of the state
of the system at a given time with respect to the specified initial
conditions. Although the Rein & Tamayo (2016) integrator could
have been put to use for this problem, we are interested in devel-
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2 E. Agol et al.

oping a complementary code which trades generality and precision
for potentially more speed.

The basic integrator we use has been described in two prior
papers: Hernandez & Bertschinger (2015) and Dehnen & Hernan-
dez (2017). The novel aspect underlying the integrator is to allow
all bodies to be treated on equal footing. A universal Kepler solver
(Wisdom & Hernandez 2015) is used to integrate pairs of bodies
with Keplerian drifts forwards in time, interspersed with constant-
velocity correctionswhich are negative in time, while using operator
splitting to create a symplectic and time-symmetric integrator out
of the original concept proposed by Gonçalves Ferrari et al. (2014).
A potential advantage of this approach is the adaptability to differ-
ent problems with various geometries, such as hierarchical triples,
pairs of binaries, or other more complex hierarchies (Hamers &
Portegies Zwart 2016). The popular Wisdom–Holman method, and
its variants, which use different coordinates and Hamiltonian split-
tings (Hernandez & Dehnen 2017) assume that there is a dominant
mass and widely separated planets. For general applications, these
assumptions are too constraining.

A drawback of this integrator is the potential for numerical
cancellation errors to accumulate due to alternating negative and
positive time steps which are a necessary part of the algorithm.
In developing this code, we found that these cancellations caused
numerical errors which accrue accrue in proportion to the number
of time steps. This becomes more significant when the time steps
are short, as more steps are required for a given integration time.We
have rectified this problem by combining the negative and positive
time steps into a single step, and cancelling the terms analytically,
whichwe find reduces the numerical errors significantly. So, another
goal of this paper is to describe this improved integrator.

1.2 Motivation: TTVs and photodynamics

The particular application we have in mind is the detection and
characterization of exoplanet systems. Planetary interactions be-
come important when data are of high precision, or if integrations
are carried out on long timescales to study system stability. The
first example of non-Keplerian interactions being important was the
pulsar exoplanet system PSR 1257+12 (Wolszczan & Frail 1992).
As had been predicted, the interactions of the planets were de-
tected in the pulsar timing, and then used to confirm the plane-
tary nature of the system, as well as measure the inclinations and
masses of the planets by breaking the mass-inclination degener-
acy which accompanies Doppler shifts (Rasio et al. 1992; Malhotra
et al. 1992; Peale 1993; Wolszczan 1994). Second, high-precision
radial-velocity measurements of exoplanet systems also require ac-
counting for planet-planet interactions. An early example of this is
GJ 876, which required an N-body integration to match the ob-
served stellar radial velocity instead of treating the radial velocity
signal as a sum of unperturbed Keplerians (Laughlin & Chambers
2001). Third, the Kepler spacecraft yielded sufficient precision of
the times of transit of exoplanets to produce a novel means of detect-
ing and characterizing exoplanets: transit-timing variations (TTVs;
Holman&Murray 2005; Agol et al. 2005). The Kepler-9 planet sys-
tem showed strong anti-correlated variations in the times of transit
relative to a fixed ephemeris, which allows for measurement of the
planet masses (Holman et al. 2010; Dreizler & Ofir 2014; Freuden-
thal et al. 2018; Borsato et al. 2019). Currently, several planets have
been detected with TTVs, while hundreds have been characterized
(see Agol & Fabrycky 2017; Jontof-Hutter 2019, and references
therein).

Transit-timing variations are entirely due to non-Keplerianmo-

tion of the planetary orbits. In the Newtonian two-body problem,
transits occur at regular intervals, and so the transit times are uni-
formly spaced in time with the orbital period of the system. When
three or more bodies interact, every pair of bodies no longer follows
a Keplerian orbit, but is perturbed by the other bodies in the system.
In the planetary case, the perturbations of the times of transit by
other planets are typically small compare with the orbital period of
the planet. TTVs are defined as the residuals of a linear fit to the
times of transit (Agol et al. 2005), and so by definition TTVs are
imparted by non-Keplerian motion. Consequently, the presence of
TTVs typically requires an N-body model for the computation of
the times of transit.

The advent of the detection of TTVs spurred theoreticalmodels
for short-term planetary dynamics. Analytic prescriptions exist for
transit-timing variations (e.g. Agol et al. 2005; Nesvorný & Beaugé
2010; Lithwick et al. 2012; Nesvorný & Vokrouhlický 2014; Deck
& Agol 2015; Agol & Deck 2016; Deck & Agol 2016; Nesvorný
& Vokrouhlický 2016; Hadden & Lithwick 2016). However, the
dynamics of multi-planet systems is sufficiently complex that any
analytic prescription is only accurate in a confined region of pa-
rameter space and/or limited timescales, and generally needs to
be checked against numerical integration since it is unknown be-
forehand whether these restrictions apply to the masses and orbital
elements of a particular system (e.g. Deck & Agol 2015; Jontof-
Hutter et al. 2016; Hadden & Lithwick 2017; Linial et al. 2018;
Yoffe et al. 2021). On the other hand, numerical integration can be
much more computationally expensive and can accrue numerical
errors.

When optimizing a TTV model, the gradient of the likeli-
hood is often required to find the direction in which the variation
of the initial conditions will improve the likelihood. The likeli-
hood gradient in turn requires the gradient of each transit time with
respect to the initial conditions. Often finite-differences are used
to estimate this gradient; however, finite difference derivatives are
limited by the numerical accuracy of the integration; see Rein &
Tamayo (2016) about the drawbacks of finite-difference derivatives.
This can cause difficulty in optimizing numerical TTV model fits.
In addition, finite-differences are expensive to compute as at least
two integrations are required for each parameter, and truncation or
round-off errors can limit the precision. For planetary systems, this
requires 14N integrations for N planets.

Computing the posterior parameter distributions for observed
systems requires numerous evaluations of the likelihood, which
becomes difficult to explore for high-dimensional planetary sys-
tems due to the “curse of dimensionality" making grid-based and
Markov-chain based integrations prohibitive. This can be amelio-
rated by Hamiltonian Markov chains, which require computation of
the derivatives of the likelihood function (Girolami & Calderhead
2011).

Dynamical interactions have also been measured in systems
where multiple stars are present. The triple-star KOI-126 was char-
acterizedwith a “photodynamical"model (Carter et al. 2011), which
requires coupling an N-body code to a photometric model. The ar-
chitecture of this system prohibits the use of a standard Wisdom-
Holman type symplectic integrator to describe the dynamics as
there is a binary star in orbit about a more massive star. Similarly,
circumbinary planets, such as Kepler-16b, have been found which
require a photodynamical model of the stars and planets (Doyle
et al. 2011). One can imagine more complex geometries, such as a
planet-moon pair orbiting a binary star, which would also require a
photodynamical code to model. The computational expense of each
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Derivatives of TTVs 3

of these models is significant, so that obtaining converged posterior
parameters is a challenge.

Given these observational modeling problems, the motivation
for this code is to provide derivatives of a general N-body integrator
for short-term integrations to model stellar and planetary systems
with arbitrary hierarchy, and to compute the derivatives of themodel
with respect to the initial conditions to allow for better optimiza-
tion of the model likelihood and to explore parameter space more
efficiently with Hamiltonian Markov chain Monte Carlo.

In §2 we describe the original symplectic integrator algorithm,
and discuss its numerical instability. In §3 we give the modifications
to the algorithm we have made to prevent numerical cancellation.
In §4 we introduce the derivatives of the algorithm. In §5 we de-
scribe the implementation and precision of the algorithm. In §6 we
compare the algorithm with other N-body integrators. Finally, in §7
we conclude.

2 OVERVIEW OF SYMPLECTIC INTEGRATOR

We carry out the N-body integration with a symplectic integra-
tor (Channell & Scovel 1991) which uses Kepler steps to integrate
pairs of bodies, interspersed with constant velocity corrections, thus
treating each and every body in an identical manner (Hernandez &
Bertschinger 2015). The advantage of this approach is that the inte-
grator can be used as an all-purpose integrator for studying systems
with a range of architectures. The integrator is especially powerful
when binaries at any scale are present. A fourth-order corrector
gives higher precision to this integrator without much additional
computational cost (Dehnen &Hernandez 2017); hence, we refer to
the algorithm as DH171 in what follows. DH17 is mathematically
written by eq. (30) in Dehnen & Hernandez (2017), using α = 0.
In Section 4.9 and Algorithm 2 we present a generalization of the
method, described mathematically by eq. (40) in Dehnen & Her-
nandez (2017). This generalization is also referred to as DH17 as
Dehnen & Hernandez (2017) also called both methods the same
name. The methods described here are all time-reversible and time-
symmetric (Hairer et al. 2006; Hernandez & Bertschinger 2018).
We give an overview of DH17, along with transit-time finding, in
algorithm 1, which uses a fixed time step, h, from initial time t0
over a duration tmax.

Unfortunately the DH17 algorithm is numerically unstable.
Consequently, we have modified the DH17 algorithm, and present
a modified algorithm, which we will refer to as AHL21, in which
we combine pairs of steps of the DH17 algorithm into a single step.
The AHL21 algorithm is mathematically identical to the DH17
algorithm; however, thanks to carrying out the cancellation ana-
lytically rather than numerically, it more numerically stable, as we
describe in §3. But first we start by outlining the DH17 algorithm
and its drawbacks.

2.1 DH17 algorithm summary

The original DH17 algorithm is given in Algorithm 1. The algo-
rithm is derived from a splitting of the Hamiltonian into pairwise
Keplerian terms,

H = T + V,

1 In Dehnen & Hernandez (2017), this algorithm was called ‘DH16’. We
have used ‘DH17’ to reflect the publication year.

= T +
∑
i

∑
j>i

Vi j,

= T +
∑
i

∑
j>i

(
Ki j − Ti j

)
, (1)

where T is the kinetic energy, V is the total kinetic energy, while
Ti j , Vi j , and Ki j are the kinetic, potential, and total energy of a
pair of bodies i and j. The Ki j term is the two-body Hamiltonian,
whose solution amounts to a Keplerian orbit, hence the notation
“K" (Hernandez & Bertschinger 2015). Note that the minus sign in
front of the kinetic energy term indicates a backward drift in time.

The creation of a second-order map from this splitting of the
Hamiltonian involves division of each time-step of duration h into
two sub-steps of duration h/2. In each of the substeps the order of
application of the terms is reversed to cancel first-order error terms.
In addition, a fourth-order velocity corrector is added in the middle
of the time step, which amounts to applying tidal accelerations
to the velocities which are neglected in the two-body elements
of the Hamiltonian, yielding much higher precision without much
additional computational effort; this results in Algorithm 1.

The DH17 algorithm differs in its accuracy from symplectic
integrators typically used for planetary systems. Planetary sytems
with a dominant mass are described by a Hamiltonian,

H = A + εB, (2)

where ε � 1 in which the terms A and B are typically chosen to
be integrable. For this Hamiltonian, the Wisdom–Holman method
(WH) (Wisdom&Holman 1991) has been developed which carries
an energy error of O(εh2)2, where h is the step size. In contrast,
the DH17 algorithm is 4th order and its error is O(εh4). However,
while WH assumes ε � 1, DH17 does not require this assumption.

As mentioned, there is an unfortunate drawback to the DH17
algorithm, which is the negative time step. In cases in which the
potential energy term is small, the Ki j and −Ti j terms nearly can-
cel. What this means is that the motion induced by these terms in
the mapping can be nearly equal and opposite, causing numerical
cancellation which leads to roundoff errors which accumulate with
time. This has two different causes. First, the center-of-mass portion
of these Hamiltonians is identical, and thus cancels exactly (Dehnen
& Hernandez 2017). Second, if the acceleration is weak, or the time
step is short enough that the acceleration does not result in a signif-
icant change in velocity, then the Keplerian step is nearly inertial,
and so entire Kepler step is very nearly equal and opposite to the
negative drift. These two sources of cancellation can lead to numer-
ical errors when implementing the algorithm.We found these errors
to be severe for long integrations, for weakly interacting bodies (e.g.
pairs of planets), or for very short time steps, which compounds the
error more rapidly. We present a solution to this issue in the next
section, which is our first main result.

3 THE MORE ACCURATE AHL21 ALGORITHM

In this paper we present amodified version of theDH17 algorithm in
which the negative drifts (−Ti j ) and Keplerian steps (Ki j ) are com-
bined algebraically, so that leading order terms are cancelled by
hand. This exact cancellation prevents the accumulation of round-
off and truncation errors which occur when implementing the DH17

2 Different conventions are used for the scalings with ε . In the convention of
Hernandez&Dehnen (2017), the error scales as O(ε2h2). In this convention,
all scalings get an extra factor of ε .
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4 E. Agol et al.

Data: Initial Cartesian coordinates and masses at time
t = t0.

Result: Integration of N-body system over time tmax, and
resulting times of transit and derivatives.

for t − t0 < tmax do
Drift all particles for time h/2;
for all pairs of particles (i, j) do

Drift particles i and j for time −h/2;
Apply a Kepler solver to advance the relative
coordinates of i and j by h/2;

Advance center of mass coordinates of i and j by
h/2;

end
Apply fourth-order velocity correction to all particles
over time step h;

for reversed pairs of particles (i, j) do
Apply a Kepler solver to advance the relative
coordinates of i and j by h/2;

Advance center of mass coordinates of i and j by
h/2;

Drift particles i and j for time −h/2;
end
Drift all particles for time h/2;
if transit has occurred for particles i and j then

Refine transit time, and save.
end
Increment time t by h.

end
Algorithm 1: Transit times with DH17 symplectic integration

algorithm. We find that this approach gives a higher precision nu-
merical algorithm yielding results that obey the expected h4 scaling
of the algorithm down to machine precision on the timescales we
have tested.

To describe this new approach, we first need to summarize the
application of these two sub-steps.

3.1 Kinetic-energy drift

The drift term is the most straightforward: each particle (for T) or
pair of particles (for Ti j ) simply drifts inertially,

xi(t + h) = xi(t) + hvi(t), (3)

for a time-step h. Again, note that −Ti j in equation (1) indicates that
h is negative.

3.2 Universal Kepler step

To carry out the Ki j mapping, we use a universal Kepler solver
to compute the change in the relative position between the bodies
(Wisdom & Hernandez 2015). The Kepler solver uses a universal
Kepler equation based upon the initial positions and velocities of a
pair of bodies at the start of a step. The solution of Kepler’s equation
enables a mapping of the initial phase-space coordinates to the final
phase-space coordinates after a time h assuming pairwise Keplerian
motion (i.e. neglecting every other body in the system).

The equation of motion in Cartesian coordinates derived from
the Ki j Hamiltonian for each Kepler step is given by

Üxi j = −
kxi j
r3
i j

, (4)

where k = GMi j , Mi j is the sum of the masses of the pair of bodies,
xi j = xi − xj , and ri j = |xi j |. The universal solver transforms
the time dependence to an independent variable, s, defined by Ûs =
ds/dt = r−1, where r is the distance between the bodies, which
simplifies the equations of motion. In the rest of this section we
drop the subscript i j from the mass, coordinate and velocity vectors,
i.e. M = Mi j , r = ri j , x ≡ xi j , and v ≡ vi j . We will refer to the
Cartesian coordinates for the Keplerian as (x0,v0) at the start of a
step and (x,v), a time h later.

A Kepler step uses the fact that in the two-body problem an-
gular momentum is conserved; thus the final relative positions and
velocities of the two bodies, x and v, are in the same plane as the
initial relative positions and velocities, x0 and v0, while the center-
of-mass velocity remains constant and the center-of-mass position
drifts at a constant rate as there are no external perturbers. This
means that the final relative positions and velocities can be ex-
pressed as a linear combination of the initial relative velocities and
positions,

x = f x0 + gv0
v = Ûf x0 + Ûgv0, (5)

where f and g are Gauss’s functions, which we define in more detail
below as a function of x0, v0, h, and k, where k = GM is the central
force constant.

Then, the equations describing the initial and final states are
given by Wisdom & Hernandez (2015), based on Mikkola & Inna-
nen (1999). We define

r0 = |x0 | , (6)
v0 = |v0 | , (7)
r = |x| , (8)
v = |v| , (9)

where r0 is the initial separation, v0 is the initial relative speed, and
r, v are the separation and relative speed at the end of the step. We
define some additional quantities,

Ûr0 =
x0 · v0

r0
, (10)

α0 =
r2
0
2
, (11)

η0 = Ûα0 = r0 Ûr0 = x0 · v0, (12)

β =
2k
r0
− v2

0, (13)

=
2k
r
− v2. (14)

Expressing the final positions and velocities in terms of the
initial values requires the Gauss f and g functions, which are given
by

f = 1 −
k
r0

G2, (15)

g = r0G1 + η0G2, (16)

and their derivatives

Ûf = −
k

rr0
G1, (17)

Ûg =
1
r
(r0G0 + η0G1) , (18)

where Gi(β, s) are four functions whose definitions depend on the
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Derivatives of TTVs 5

sign of β for i = 0, ...,3 (Table 1). With these definitions, Wisdom
& Hernandez (2015) show that

r(s) = r0G0 + η0G1 + kG2. (19)

This equation may also be derived from conservation of angular
momentum, requiring x0 × v0 = x × v, which yields the condition
f Ûg − g Ûf = 1; this equation is equivalent to equation (19). Equation
(19) can be integrated over a time step, h, to give an implicit Kepler’s
equation for s,

h = r0G1 + η0G2 + kG3, (20)

which can be solved usingNewton’smethod to find s as a function of
h, r0, η0, k, and β. The functions G0,G1,G2 and G3 are defined in
Table 1 in terms of trigonometric and hyperbolic functions (Wisdom
&Hernandez 2015), which differ based uponwhether the bodies are
bound (elliptic) or unbound (hyperbolic).3 As the Gi functions only
depend upon s and β, once s is found numerically, the remainder of
the Kepler step simply involves algebraic computation.

3.3 Combined Kepler and Drift step

In theAHL21 algorithm these two steps,−Ti j andKi j , are combined
in different orders: either a negative drift followed by a Kepler step,
−Ti j + Ki j , or a Kepler step followed by a negative drift, Ki j − Ti j
(Algorithm 2). As these operations do not commute, we need to
handle each one separately. A diagram showing the order of these
mappings is given in Figure 1. In each case, the position coordinate
takes on an intermediate value, which changes the nature of the
combined steps.

We describe these two options in the following subsections.

3.3.1 Drift then Kepler

In the first case, the negative drift is taken first, yielding

x̂0 = x0 − hv0. (21)

With thismodified value of the initial position, theGauss f , g, Ûf , and
Ûg functions need to be computed from (x̂0,v0, k, h), so we indicate
these functions with a hat, e.g. f̂ ≡ f (x̂0,v0, k, h). In addition,
we would like to find the difference between the final and initial
coordinates, ∆xDK = x̂ − x0 and ∆vDK = v̂ − v0; this allows for a
more accurate computation of these quantities when the step sizes
are small. In the combined step, -Drift+Kepler (which we indicate
with “DK"), the resulting term is

∆xDK = ( f̂ − 1)x0 + (ĝ − h f̂ )v0,

∆vDK =
Û̂f x0 + ( Û̂g − h Û̂f − 1)v0, (22)

where, again, f̂ , ĝ, Û̂f , and Û̂g are all computed in terms of (x̂0,v0, k, h).
This means that the scalar functions these depend on also need to
be computed in terms of x̂0,

r̂0 = |x̂0 |,

β̂ =
2k
r̂0
− v2

0,

η̂0 = x̂0 · v0,
Ĝi = Gi(β̂, γ̂), (23)

where γ̂ can be computed with Newton’s method from equation
(20) evaluated using r̂0, η̂0, and Ĝi , and r̂ can be computed from
(19) in the same manner.

3 This equations simplifies to a cubic in the parabolic case when β = 0.

The Gauss function terms in equation (22) are given as

f̂ − 1 = −
k
r̂0

Ĝ2,

ĝ − h f̂ = k
(

h
r̂0

Ĝ2 − Ĝ3

)
,

Û̂f = −
k

r̂r̂0
Ĝ1,

Û̂g − h Û̂f − 1 =
k
r̂

(
h
r̂0

Ĝ1 − Ĝ2

)
. (24)

Note that in these equations the 1’s have been cancelled analytically;
this yields more stable computation of the changes in the positions
and velocities when these are small.

3.3.2 Kepler then Drift

In the other case, a Kepler step is applied first, followed by a neg-
ative drift. The Kepler step can be computed in terms of the initial
coordinates, x0 and v0, yielding intermediate coordinates (x̌, v̌), and
then the negative drift is applied resulting in x = x̌ − hv̌ (Figure 1).

We combine these and take the difference with the initial co-
ordinates, ∆xKD = x̌ − hv̌ − x0 and ∆vKD = v̌ − v0, to give the
resulting difference vectors

∆xKD = ( f − h Ûf − 1)x0 + (g − h Ûg)v0,
∆vKD = Ûf x0 + ( Ûg − 1)v0, (25)

where f , g, Ûf , and Ûg are all computed in terms of (x0,v0, k, h), and
the “KD" indicates that the Kepler step precedes the negative drift,
Kepler-Drift.

These functions can also be expressed in terms of the Gauss
functions as

f − h Ûf − 1 =
k
r

(
G2 −

k
r0

(
G2

2 − G1G3
))
,

g − h Ûg =
k
r

(
r0 (G1G2 − G0G3) + η0

(
G2

2 − G1G3
))
,

Ûf = −
k

rr0
G1,

Ûg − 1 = −
k
r

G2, (26)

where we have used equations (20) and (19) to transform these
equations. Note that in this case each of these functions depends on
(x0,v0, k, h) as the Kepler step is applied before the drift.

Unfortunately these equations can lead to numerical instability
for small values of γ =

√
|β |s.4 The offending terms involve differ-

ence of products of Gi functions: G1G2 − G0G3 and G2
2 − G1G3.

These terms have a Taylor series expansion in which the leading
order terms in s cancel; this is also true for the function G3.

So, we define two new functions, H2 = G1G2 − G0G3 and
H1 = G2

2 − G1G3, given in Table 1. In terms of these functions we
have

f − h Ûf − 1 =
k
r

(
G2 −

k
r0

H1

)
,

g − h Ûg =
k
r
(r0H2 + η0H1) . (27)

For large values of γ we evaluate these with the special function

4 Note that in the elliptic Kepler’s equation, γ is equal to the change in
eccentric anomaly over the time step.
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6 E. Agol et al.

Table 1. Functions Gi (s) used in solving Universal Kepler equation, and functions Hi used later in the combined drift+Kepler step and its derivatives.

variable elliptic parabolic hyperbolic

β > 0 = 0 < 0
γ

√
βs —

√
−βs

G0(β, γ) cosγ 1 coshγ
G1(β, γ)

sinγ
√
β

s
sinhγ
√
−β

G2(β, γ) β−1(1 − cosγ) 1
2 s

2 β−1(1 − coshγ)
G3(β, γ) β−1(γ − sinγ)/

√
β 1

6 s
3 β−1(γ − sinhγ)/

√
−β

H1(β, γ) β−2(2 − 2 cosγ − γ sinγ) 1
12 s

4 β−2(2 − 2 coshγ + γ sinhγ)
H2(β, γ) β−3/2(sinγ − γ cosγ) 1

3 s
3 (−β)−3/2(− sinhγ + γ coshγ)

H3(β, γ) β−1 (4 sinγ − sinγ cosγ − 3γ) /
√
β − 1

10βs
5 β−1 (4 sinhγ − sinhγ coshγ − 3γ) /

√
−β

H5(β, γ) β−1 (3 sinγ − γ cosγ − 2γ) /
√
β − 1

60βs
5 β−1 (3 sinhγ − γ coshγ − 2γ) /

√
−β

H6(β, γ)
1
2β
−2 (9 − 8 cosγ − cos 2γ − 6γ sinγ) 1

40βs
6 1

2β
−2 (9 − 8 coshγ − cosh 2γ + 6γ sinhγ)

(x0,v0) −Tij

x̂0 = x0 − hv0

(x̂0,v0)

x̂ = f(x̂0,v0)x̂0 + g(x̂0,v0)v0
Kij

v̂ = ḟ(x̂0,v0)x̂0 + ġ(x̂0,v0)v0

Kij (∆xDK ,∆vDK) = (x̂, v̂) − (x0,v0)

x̌ = f(x0,v0)x0 + g(x0,v0)v0
Kij

v̌ = ḟ(x0,v0)x0 + ġ(x0,v0)v0

(x̌, v̌) −Tij

x = x̌− hv̌

(∆xKD,∆vKD) = (x̌− hv̌, v̌) − (x0,v0)

-Drift
Kepler

Kepler
-Drift

Figure 1. The order of the combined substeps (from upper left corner to lower right corner) has two sequences: first a negative drift followed by a Kepler step,
then a Kepler step followed by a negative drift. These two options need to be handled separately, and notation for the intermediate steps is summarized in this
diagram.

definitions, summarized in Table 1, while for small values of γ, we
evaluate G3,H1 and H2 in terms of the following Taylor series:

H1(γ, β) =
2γ4

β2

∞∑
n=0

(εγ2)n(n + 1)
(2n + 4)!

, (28)

H2(γ, β) =
2γ3

|β |3/2

∞∑
n=0

(εγ2)n(n + 1)
(2n + 3)!

, (29)

G3(γ, β) =
γ3

|β |3/2

∞∑
n=0

(εγ2)n

(2n + 3)!
. (30)

where ε = −1 for β > 0 (elliptic) and ε = 1 for β < 0 (hyperbolic)
cases. Note that in evaluating these series expansions we compute
each term recursively, and terminate the series expansion when the
function matches one of the two prior partial sums (indicating that
the series is converged to machine precision).

The fact that these functions have leading terms ∝ γ3 and ∝ γ4

is due to cancellation of lower order terms in the trigonometric
representation. This cancellation can lead to round-off errors for
small values of γ, which are commonly encountered when there
are a wide range of orbital timescales in a system. We find that
higher precision is obtained by evaluating the series expressions for
γ < 1/2 out to ≈ 6 terms in double-precision, while for γ > 1/2,
higher precision is obtained from the full trigonometric expression.

The other Gi functions (G0,G1 and G2) we evaluate with the
stable trigonometric and hyperbolic function transforms discussed
in Wisdom & Hernandez (2015). With the combination of the drift

and Kepler steps, it turns out that we no longer need the drift of
the center-of-mass coordinates in each Kepler step as these cancel
exactly.

Thus, the DH17 algorithm simplifies significantly at the ex-
pense of making the substeps slightly more complicated. This new
combined algorithm we dub “AHL21", which is given in Algorithm
2. The fourth-order correction is the same as that given in Dehnen
& Hernandez (2017), and is summarized in §4.8. The transit-time
finding is described below in §4.11. An alternate version of the al-
gorithm in which the combined drift and Kepler steps are replaced
by a kick for some pairs of bodies is given in §4.7.

The primary goal of this paper is to describe the implemen-
tation and differentiation of the AHL21 algorithm, yielding the
derivatives of the transit times with respect to the initial conditions.
Along the way we compute the derivatives of the state of the sys-
tem at each time step with respect to the initial conditions, which
may be used for other applications such as photodynamics, radial
velocity, astrometry, or computation of Lyapunov exponents. Next
we describe the derivative computation.

4 DIFFERENTIATION OF SYMPLECTIC INTEGRATOR

We divide the problem up into a series of steps,

(i) Derivative of coordinates at end of a symplectic step with
respect to coordinates at the beginning. This includes the Kepler
step, drifts and kicks (§4.4).
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Derivatives of TTVs 7

Data: Initial Cartesian coordinates and masses at time
t = t0.

Result: Integration of N-body system over time tmax, and
resulting times of transit and derivatives.

for t − t0 < tmax do
Kick particles in AC for time h/6;
Drift all particles for time h/2;
for pairs of particles (i, j) in A do

Apply a combined -Drift+Kepler step for bodies i
and j over a time h/2 to give the changes in
position and velocity of ∆xDK and ∆vDK and
update x and v;

end
Apply velocity correction and a kick, both multiplied
by 2/3, to particles in AC ;

Apply velocity correction to particles in A;
for reversed pairs of particles (i, j) in A do

Apply a combined -Drift+Kepler step for bodies i
and j over a time h/2 to give the changes in
position and velocity of ∆xDK and ∆vDK and
update x and v;

end
Drift all particles for time h/2;
Kick particles in AC for time h/6;
if transit has occurred for particles i and j then

Refine transit time, and save.
end
Increment time t by h.

end
Algorithm2:Transit timeswithAHL21 symplectic integration.

(ii) Derivatives of fourth-order velocity correction (§4.8).
(iii) Propagation of Jacobians through each of these steps (§4.9).
(iv) Derivative of parameters output at specified times with re-

spect to the coordinates at the symplectic time grid. Here we give
the example of the derivatives of the transit times with respect to
the initial conditions (§4.11), but this could also include eclipse
times, radial velocity at pre-specified time, or relative positions of
the bodies at times of observation. This step involves an AHL21
step with a fractional time duration.

We describe each of these steps in turn.

4.1 Notation conventions

The integration is carried out in inertial Cartesian coordinates (Her-
nandez & Bertschinger 2015), while the initial conditions of the N
bodies are specified in either of two forms: Cartesian coordinates
of N bodies, or orbital elements in a hierarchy of N − 1 Keplerians
(which we leave to a future paper). The initial time of the start of the
integration, t0, requires a snapshot of the phase-space coordinates or
orbital elements, which fully specify the problem with the addition
of the masses of the bodies, m = {m1, ...,mN }, which are constant
in time. In this section we describe the phase-space coordinates.

4.2 Code units

We utilize units for masses in M� , positions in AU, and time in
days. Our gravitational constant is given by GM� = 0.00029598
AU3day−2M−1

� . The initial conditions, then, simply need to be spec-
ified in terms of masses in M� , positions in AU, and velocities in
AU/day.

x

y

z

to observer at (0,0,-D)

(x, y, z)
(ẋ, ẏ, ż)

Sky plane

Figure 2.Cartesian coordinate system. Body i is at position xi = (xi , yi , zi )
with velocity vi = ( Ûxi , Ûyi , Ûzi ).

4.3 Cartesian coordinates

The Cartesian coordinates utilize a right-handed coordinate system
for which the sky plane is the x−y plane, while the z axis is along the
line of sight, increasing away from the observer (Figure 2). Positions
for each body are denoted with a vector xi(t) = (xi(t), yi(t), zi(t)),
while velocities are denoted with vi(t) = ( Ûxi(t), Ûyi(t), Ûzi(t)), with
subscript i = 1, ..,N labelling each body, and Ûc = dc

dt indicates time
derivative of variable c. The observer is located at xobs = (0,0,−D),
where D is the distance of the observer to the center of mass of the
system.

The initial conditions are completely specified via q(t0), where
q(t) = {xi(t),vi(t),mi ; i = 1, ...,N}. The vector q(t) has 7N ele-
ments, where the 7(i − 1)+ jth element refers to planet i and the jth
element of the vector

qi(t) = {xi(t), yi(t), zi(t), Ûxi(t), Ûyi(t), Ûzi(t),mi} (31)

where j = 1, ...,7. Note that we take the origin of the coordinates to
be the center of mass of the system, so that a constraint on the initial
conditions is

∑
i miqi, j (t0) = 0 for j = 1, ...,6, where qi, j denotes

the jth element of of qi(t).5
The coordinate system is right-handed,with the x-axis pointing

to the right on the sky, then the y-axis points downwards, so that
x̂ × ŷ = ẑ points away from the observer, for unit vectors { x̂, ŷ, ẑ}
(Figure 2).

4.4 Derivative of a combined Drift and Kepler step

The building block of this integrator is the universal Kepler solver
for integrating pairs of bodies (Wisdom & Hernandez 2015), which
we combined with a negative drift, before or after, described in §3.3.
StandardWisdom-Holman N-body symplectic integrators (Wisdom
& Holman 1991) use an elliptic (bound) Kepler solver for the ‘un-
perturbed’ motion, while the weaker interactions between low-mass
or distant bodies are treated as impulses or kicks alternating with the
Kepler drifts. In the case of the DH17 integrator, a hyperbolic step
is needed for the pairwise Keplerian integration of bodies that are
unbound; this is used as an alternative to kicks. In this section we

5 In general, the center-of-mass is allowed to move at a constant velocity,
which is not implemented in our initial conditions, but could be if required.

MNRAS 000, 1–22 (2020)

Page 7 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 E. Agol et al.

summarize the computation of the the Jacobian of the final relative
coordinates with respect to the initial coordinates over a time step
with duration h, and then the transformation to the coordinates of
the individual bodies.

The variational equations for the Cartesian coordinates de-
pends on the ordering of the negative drift and Kepler step. For the
combined negative drift followed by a Kepler step, the change in
relative position and velocity is

δ∆xDK = ( f̂ − 1)δx0 + (ĝ − h f̂ )δv0
+ δ( f̂ − 1)x0 + δ(ĝ − h f̂ )v0, (32)

δ∆vDK =
Û̂f δx0 + ( Û̂g − h Û̂f − 1)δv0

+ δ Û̂f x0 + δ( Û̂g − h Û̂f − 1)v0, (33)
(34)

while for a combined Kepler step followed by a negative drift, the
variation of the change in relative coordinates is

δ∆xKD = ( f − h Ûf − 1)δx0 + (g − h Ûg)δv0
+ δ( f − h Ûf − 1)x0 + δ(g − h Ûg)v0, (35)

δ∆vKD = Ûf δx0 + ( Ûg − 1)δv0
+ δ Ûf x0 + δ( Ûg − 1)v0, (36)

where we have taken the differential of equations (22) and (25).
The first line of each equation we have already computed, while the
differentials of the Gauss functions in the second lines remain to be
computed.

Each of the differential Gauss function terms involve the basis
(x0,v0, k, h), while each of these functions is defined in terms of
Gi(β, γ), β, γ,r0,r and η0 (or Ĝi(β̂, γ̂), β̂, γ̂, r̂0, r̂ and η̂0). Note that
if h is varied as a function of phase space, symplecticity is lost; how-
ever we accept a small symplecticity violation at a single timestep
when searching for transit times. A similar choice wasmade in Deck
et al. (2014). Thus, we first need to compute the differential of these
Gauss function terms with respect to these intermediate quantities,
and then propagate through these differentials using the chain rule
to obtain the derivatives with respect to the basis. There is an extra
step involved in the drift-first case (DK): since the functions on the
right hand side are defined in terms of x̂0 = x0 − hv0, we also need
to apply the chain rule to x̂0 to transform the derivatives to the basis.

We start with the differentials of the intermediate quantities.

4.4.1 Differential of intermediate quantities

The differentials of r0, β, η0 are given by

δr0 =
x0 · δx0

r0
, (37)

δβ =
δk
r0
−

kδx0 · x0

r3
0

− 2v0 · δv0, (38)

δη0 = v0 · δx0 + x0 · δv0. (39)

Note that these quantities are constant over a time step, and so there
is no dependence upon δh.

Taking the differential of the Universal Kepler equation, 20,
we find

|β|−1/2rδγ = δh + δk
[

D
r0
− G3

]
− δx0 ·

[(
kD + G1r2

0

) x0

r3
0
+ G2v0

]
− δv0 · [Dv0 + G2x0] , (40)

D = β−1 [h + η0G2 + 2kG3] . (41)

Note that the δv0 · x0 and δx0 · v0 have the same derivative terms;
this is due to both of these terms deriving from δη0.

Taking the differential of the radial equation, (19), we find

δr =
δγ

|β |1/2
(η0G0 + ζG1) +

δk
βr0
(r0 − r − kG2)

+ δx0 ·

[(
kr + k2G2 − ζr0G0

) x0

βr3
0
+ G1v0

]
+ δv0 ·

[
(η0G1 + 2kG2)

v0
β
+ G1x0

]
, (42)

where we define ζ = k − r0β.
The functions Gi(β, γ) have derivatives in terms of β and

γ, which we can combine with the foregoing differentials for
these quantities to obtain the derivatives with respect to the ba-
sis (x0,v0, k, h). These intermediate derivatives of Gi (in both the
elliptic and hyperbolic cases) are given by

∂Gi+1
∂γ

=
Gi

|β |1/2
(i ≥ 0), (43)

∂G0
∂γ

= −
βG1
|β |1/2

, (44)

and
∂Gn

∂β
= −

n
2β

Gn . (45)

With these intermediate derivatives in hand, we can compute
the full differentials of the Gauss functions in the combined drift
and Kepler terms. Since these formulae differ in the two cases, we
consider each separately in turn in the following two subsections.

4.4.2 Differential of drift-then-Kepler step

The differential of the scalar quantities δ( f̂ − 1), δ(ĝ − h f̂ ), δ( Û̂f ),
and δ( Û̂g − h Û̂f − 1) should also be scalars, and can be expressed in
terms similar to the δγ and δr terms given above. Note, however,
that as the Kepler step takes place after the negative drift, all of
these functions are to be computed in terms of x̂0 substituted for
x0, and so we need to add an extra step in the derivation to find the
differentials in terms of x0 in lieu of x̂0. The differential of these
functions in terms of intermediate scalar quantities is given by

δ( f̂ − 1)
f̂ − 1

=
δk
k
−
δr̂0
r̂0
+

Ĝ1
Ĝ2

δγ̂

| β̂ |1/2
−
δβ̂

β̂
, (46)

δ(ĝ − h f̂ ) =
δk
k
(ĝ − h f̂ ) + k

[ (
δh
r̂0
−

hδr̂0

r̂2
0

)
Ĝ2

+

(
h
r̂0

Ĝ1 − Ĝ2

)
δγ̂

| β̂ |
1
2
−
δβ̂

2β̂

(
2

h
r̂0
− 3Ĝ3

) ]
,(47)

δ Û̂f
Ûf
=

δk
k
−
δr̂0
r̂0
−
δr̂
r̂
+

Ĝ0
Ĝ1

δγ̂

| β̂ |1/2
−

1
2
δβ̂

β̂
, (48)

δ( Û̂g − h Û̂f − 1) =

[
δk
r̂0r̂
−

kδr̂0

r̂2
0 r̂
−

kδr̂
r̂0r̂2

] (
hĜ1 − r̂0Ĝ2

)
+

k
r̂0r̂

[
δhĜ1 − δr̂0Ĝ2 −

1
2
δβ̂

β̂

(
hĜ1 − 2r̂0Ĝ2

)
+

(
hĜ0 − r0Ĝ1

) δγ̂

| β̂ |1/2

]
. (49)

In this equation we have used the ‘ˆ’ symbol to indicate that each
of these quantities is a function of x̂0 rather than x0 (with the
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Derivatives of TTVs 9

exception of h and k). Into these differentials we can substitute
our expressions for δβ̂, δr̂ , δr̂0, δη̂0, and δγ̂ given above, keeping
in mind that these need to be computed in terms of δx̂0 and x̂0
substituted for δx0 and x0. Then, we need to replace the differential
δx̂0 by δx0 − hδv0 − v0δh. The v0δh term leads to dot products
of v0 · x̂0 = η̂0 and v0 · v0 =

2k
r̂0
− β̂. The algebraic computation

of these operations was aided by Mathematica (Wolfram Research
2019), yielding the following results:

δ( f̂ − 1)
f̂ − 1

= δk
[

1
k
−

2
βr0
+

c1G1
rr0G2

]
+ δh

[
G1
r

(
2k
r0
− β +

1
G2

)
− c24η0

]
+ δx0 ·

[
−v0

(
c24h +

G1
r

)
+ c24x0

]
+ δv0 ·

[
c36v0 − x0

(
c24h +

G1
r

)]
, (50)

δ(ĝ − h f̂ ) = δk

[
−

c9k

βr2
0
+

c1c13k

rr2
0
+

G2h − G3r0
r0

]
+ δh

[
c13k

rr2
0
(r0G0 + 2kG2) − c10η0 +

G2k
r0

]
+ δx0 ·

[
−v0

(
c10h +

c13G2k
rr0

)
+ c10x0

]
+ δv0 ·

[
c35v0 − x0

(
c10h +

c13G2k
rr0

)]
, (51)

δ Û̂f
Û̂f
= δk

[
(G2k − r0)(G1r − βc1)

βG1r2r0
+

1
k

]
+ δh

[
c22

(
2k
r0
− β

)
−

c2
r2 + c21η0 +

G0
G1r

]
+ δx0 · [v0(c22 − c21h) + c21x0] ,

+ δv0 ·
[ (

c34 − 2hc22 + h2c21
)

v0

+ x0(c22 − c21h)
]
, (52)

δ( Û̂g − h Û̂f − 1) =
δk
rr0

[
kG2
β
+

kc1c12
rr0

+ c13

(
1 −

k
rr0

(
r0 − kG2

β
+

c1c2
r

)) ]
+

kδh
rr0

[
− c26

(
2k
r0
− β

)
+

c12
r

−
c13c2

r2 − c25η0 + G1

]
+

kδx0
rr0
· [v0(c26 − c25h) + c25x0] ,

+
kδv0
rr0
·

[
v0

(
c33 + c25h2 − 2c26h

)
+ x0(c26 − c25h)

]
, (53)

with auxiliary quantities defined as

c1 = D − r0G3,
c2 = η0G0 + G1ζ,
c3 = Dk + G1r2

0 ,
c4 = η0G1 + 2G0r0,

c5 =
r0 − kG2

rG1
,

c6 =
r0G0 − kG2

β
,

c7 = G2

(
1

G1
+

c2
r

)
,

c8 =
1
r3
0
(kc6 + rr0 + c3c5) ,

c9 = 2hG2 − 3r0G3,

c10 =
k

r4
0

(
−G2r0h +

kc9
β
−

c3c13
r

)
,

c12 = G0h − G1r0,
c13 = G1h − G2r0,
c17 = r0 − r − kG2,
c18 = η0G1 + 2kG2,
c20 = k(kG2 + r) − G0r0ζ,

c21 =
(kG2k − r0)(βc3 − kG1r)

βr2r3
0 G1

+
η0G1

rr2
0
−

2
r2
0
,

c22 =
1
r

(
−G1 −

G0G2
G1

+
G2c2

r

)
,

c24 =
1
r3
0

(
r0

(
2k
βr0
− 1

)
−

G1c3
rG2

)
,

c25 =
1
r0

(
−G2 +

k(c13 − G2r0)

βr2
0

−
c13
r0
−

c12c3

rr2
0

)
+

c13c2c3

r2r3
0
−

c13(k(kG2 + r) − G0r0ζ)

βrr3
0

,

c26 =
1
r

(
−G2c12 − G1c13 +

G2c13c2
r

)
,

c33 =
Dk2

r3r0
(hG2 − r0G3) +

k
βr2r0

(
− ηkG1G2

2 − G1G2G3k2

− r0ηβG1G2
2 − r0kG1H2 − βG2

2G0r2
0

)
,

c34 =
1
βr2

(
− βη2G2

2 − ηkH8 − H6k2 − 2βηr0G1G2

+ (G2
2 − 3G1G3)βkr0 − βG2

1r2
0

)
+
ηG2

2
rG1

+
kH8
βrG1

,

c35 =
2hkG2c13

rr0
+ h2c10

+
k

βrr0

(
r2
0 H8 − βhr0G2

2 + (hk + ηr0)H6
)
,

c36 = r−1
(
−r0G2 +

kH6
βG2

+ h(2G1 + hrc24)

)
, (54)

where we have dropped the ˆ superscript on the right hand side of
equations (50-54) for legibility, but note that all scalar quantities
in this equation which are a function of x0 must be evaluated as a
function of x̂0 in lieu of x0. In these equations, we have taken care
to analytically cancel terms to leading order in γ by defining the
following functions

H3 = G1G2 − 3G3,
H4 = −βH1,
H5 = G1G2 − (2 + G0)G3,
H6 = 2G2

2 − 3G1G3,

H7 = G1G2 − 2G0G1G2 + 3G2
0G3 = βG1G2

2 − G0H8,
H8 = G1G2 − 3G0G3 = −2H3 + 3H5. (55)

These functions are tabulated in Table 1. As with G3,H1 and H2,
for small values of γ we evaluate these with a series expansion:

H3(γ, β) = −
4γ5

β |β |1/2

∞∑
n=0

(εγ2)n(4n+1 − 1)
(2n + 5)!

, (56)

H5(γ, β) = −
2γ5

β |β |1/2

∞∑
n=0

(εγ2)n(n + 1)
(2n + 5)!

, (57)

(58)
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10 E. Agol et al.

H6(γ, β) =
2γ6

β2

∞∑
n=0

(εγ2)n
(
4n+2 − 3n − 7

)
(2n + 6)!

, (59)

where ε = −1 for β > 0 (elliptic) and ε = 1 for β < 0 (hyperbolic)
cases.

Substituting these differentials into equations (32) and (33),
we arrive at expressions for ∂∆xDK/∂x0, ∂∆xDK/∂v0, ∂∆xDK/∂k,
∂∆vDK/∂x0, ∂∆vDK/∂v0, and ∂∆vDK/∂k. We also know ∂k/∂x0
= 0, ∂k/∂v0 = 0, and ∂k/∂k = 1, which we insert into a Jacobian,
Jkep, which is a 7×7matrix. In addition,we need the time derivatives
of the coordinates with respect to the time step, h, ∂∆xDK/∂h,
∂∆vDK/∂h, to obtain the time derivatives of the transit times with
respect to the initial coordinates

This completes the derivation of the Jacobian of the combined
negative drift then Kepler step for the variation of the relative coor-
dinates of bodies i and j (recall that we dropped the i j subscripts in
this section). In the next subsection we work out the results for the
Kepler step followed by a negative drift.

4.4.3 Differential of Kepler then drift step

The Kepler step followed by a negative drift is slightly simpler as
the Gauss functions can be expressed in terms of x0 rather than x̂0.
The differential of the scalar functions are given by

δ( f − h Ûf − 1) =
δk
rr0

[
−

c14c17k
βrr0

−
2G2k
β
+

4H1k2

βr0

−
c1c14c2k

r2r0
+

c1k(G1r0 − H2k)
rr0

+ c14 − H1k

]
+

δh
r2

[
−

c14c2k
rr0

+ G1k −
H2k2

r0

]
+

δx0k
r2r0

·

[
v0c27 +

x0

βrr3
0

(
βc3(c14c2 + c23r)

+ H1kr2r0

(
β −

2k
r0

)
+ c14r

(
G0r0ζ + k(r − G2k)

))]
+

δv0k
r2r0

·

[
c29
β

v0 + x0c27

]
, (60)

δ(g − h Ûg) =
δk
r

[
c15 −

c15c17k
βrr0

−
c19k
βr0
−

c1c15c2k
r2r0

+
c1c16k

rr0

]
+ δv0 ·

[
kv0
βr2 c30 +

kx0
r2 c28

]
+ δx0 ·

[
kx0
rr0

(
−

c15(k(G2k + r) − G0r0ζ)

βrr2
0

+
c19k

βr2
0

+
c15c2c3

r2r2
0
−

c16c3

rr2
0
+ H2

)
+

kv0c28
r2

]
+

δhk
r3 [c16r − c15c2] , (61)

δ Ûf
Ûf
= δk

[
−

c17
βrr0

−
1
βr0
−

c1c2
r2r0

+
c1G0
G1rr0

+
1
k

]
+ δv0 ·

[
c31v0 + x0

(
c2G2

r2 −
G0G2
G1r

−
G1
r

)]
+ δx0 ·

[
x0

r2
0
·

(
−

k(G2k − r0)

βrr0
+

c2c3
r2r0

−
c3G0
G1rr0

+
ηG1

r
− 2

)
+ v0

(
c2G2

r2 −
G0G2
G1r

−
G1
r

) ]
+ δh

[
G0
G1r
−

c2
r2

]
, (62)

δ( Ûg − 1) =
δk
rr0

[
G2k(−G2k + r + r0)

βr
+

c1c2G2k
r2

−
c1G1k

r
− G2r0

]
+ δv0 ·

[
kc32v0
βr3 +

G2kx0
r3 (2G1r − c2G2)

]
+ δx0 ·

[
x0

r2r3
0

(
G2k(k(G2k − r) − G0r0ζ)

β

+
c3k(ηG2 + G1r0)

r

)
+

G2kv0
r3 (2G1r − c2G2)

]
+

δhk
r3 [c2G2 − G1r] , (63)

with additional auxiliary definitions,

c14 = r0G2 − kH1,
c15 = η0H1 + H2r0,
c16 = η0H2 + G1γr0 |β |

−1/2,
c17 = r0 − r − kG2,
c18 = η0G1 + 2kG2,
c19 = 4η0H1 + 3H2r0,
c23 = kH2 − r0G1,

c27 =

(
c14c2G2

r
+ k(G1H1 + G2H2) − 2G1G2r0

)
,

c28 =

(
c15c2G2

r
− c15G1 − c16G2 + H1r

)
,

c29 = 2ηk(G2G3 − G1H1) + (3G3H2 − 4H1G2)k
2

+ βG2r0(3H1k − G2r0)

+
c14
r

(
− βG2

2η
2 + ηk(2G0G3 − H2) − H6k2

+
(
− 2ηG1G2 + k(H1 − 2G1G3)

)
βr0 − βG2

1r2
0

)
,

c30 = 2η2(G1H1 − G2G3) + ηk(4G2H1 − 3H2G3)
+ r0η(4G0H1 − 2G1G3)
+ 3r0k

(
(G1 + βG3)H1 − G3G2

)
+

(
G0H8 − βG1(G

2
2 + G1G3)

)
r2
0

−
c15
r

(
βG2

2η
2 + ηkH8 + H6k2

+
(
2ηG1G2 − k(G2

2 − 3G1G3)
)
βr0 + βG2

1r2
0

)
,

c31 =
1
βr2

(
(ηG2

2β + kH8)(r0G0 + kG2)

G1
− H6k2

+ (−2ηG1G2 + (H1 − 2G1G3)k)βr0 − βG2
1r2

0

)
,

c32 = η2βG3
2 − ηkG2H3 + 3r0ηβG1G2

2
+ r0k(3βG1G2G3 − G0H6) + βG2

(
G0G2 + G2

1
)
r2
0 .(64)

Note that in this case, as the Kepler step takes place first, all of the
scalar quantitites in this equation are defined in terms of x0.

As with the prior combined step, the terms in these differentials
may be inserted into a Jacobian, Jkep, as well give the derivatives
with respect to h. This completes the description of the Jacobians
computed for the combined drift and Kepler steps for the change in
the relative coordinates between bodies i and j. This needs to be
translated into the variations of the positions and velocities of the
individual bodies i and j, which we describe next.
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Derivatives of TTVs 11

4.5 Jacobian of combined Kepler drift step

The foregoing computation gives the variation in the relative dif-
ference between the positions and velocities of bodies i and j. This
translates into variations in the positions of bodies i and j given by

∆xi,DK =
mj

mi + mj
∆xDK,

∆xj ,DK = −
mi

mi + mj
∆xDK,

∆vi,DK =
mj

mi + mj
∆vDK,

∆vj ,DK = −
mi

mi + mj
∆vDK, (65)

and likewise for DK→ KD, where xi(t + h) = xi(t) + ∆xi,DK.
The Jacobian may be found by differentiating these equations

with respect to the initial conditions of the Kepler-drift step, which
is straightforward for the position, velocity, and time step deriva-
tives. However, since this equation involves the masses mi and mj ,
the mass derivative of a combined Kepler/drift step involves an
additional term, where

∂∆xi,DK
∂mi

= −
mj

(mi + mj )
2∆xDK +

Gmj

mi + mj

∂∆xDK
∂k

,

∂∆xi,DK
∂mj

=
mi

(mi + mj )
2∆xDK +

Gmj

mi + mj

∂∆xDK
∂k

, (66)

and the same equations apply for x→ v, i ↔ j, andDK→ KD. The
first of these two equations has a cancellation due to the difference
in sign between the two terms on the right hand side. Specifically,
∆xDK ∝ k, so there is a term in the derivative, ∂∆xDK/∂k, which
equals ∆xDK/k, which exactly cancels the first term in the equation.
We carry out this cancellation algebraically, thus avoiding roundoff
errors which can occur when this term is much larger than the others
in ∂∆xDK/∂k. The second equation has both terms with the same
sign, so this cancellation does not occur when the derivatives are
with respect to themass of the other body. Here we give the resulting
derivatives:

∂∆xi,DK
∂mi

=
G2mj

β̂r̂ r̂2
0
[J1x0 − J2v0] ,

J1 = r̂0Ĥ4 + kĤ6,
J2 = Ĥ6Ĝ3k2 + η̂r̂0(Ĥ6 + Ĝ2Ĥ4) + r̂2

0 Ĝ0Ĥ5 + kη̂Ĝ2Ĥ6
+ (Ĝ1Ĥ6 + Ĝ3Ĥ4)kr̂0, (67)

∂∆vi,DK
∂mi

=
G2mj

β̂r̂3r̂2
0
[J3x0 + J4v0] ,

J3 = −(Ĝ2k − r̂0)(β̂r̂0(Ĝ3 − Ĝ1Ĝ2) − β̂η̂Ĝ2
2 + kĤ3),

J4 = k
(
− β̂η̂2Ĝ4

2 + η̂Ĝ2(Ĝ1Ĝ2
2 + Ĝ2

1Ĝ3 − 5Ĝ2Ĝ3)k

+ Ĝ2Ĝ3Ĥ3k2 + 2η̂r̂0 β̂Ĝ2
2(Ĝ3 − Ĝ1Ĝ2)

+ (4Ĝ3 − Ĝ0Ĝ3 − Ĝ1Ĝ2)(Ĝ3 − Ĝ1Ĝ2)r0k
− β̂(Ĝ3 − Ĝ1Ĝ2)

2r2
0

)
. (68)

Note that the derivatives of ∆xj ,DK and ∆vj ,DK with respect to mj

look identical save for replacing mj with −mi .
Similarly, the mass derivatives in the Kepler followed by drift

step are given as:

∂∆xi,KD
∂mi

=
G2mj

βr3r2
0
[J5x0 + J6v0] ,

J5 = r
(
2ηk(G1H1 − G3G2) + (4G2H1 − 3G3H2)k

2

− ηr0βG1H1 + (G3H2 − 4G2H1)βkr0 + G2H1β
2r2

0

)

− c14
(
− η2βG2

2 − kηH8 − ηr0β(G1G2 + G0G3)

+ 2(H1 − G1G3)βkr0 − k2H6 − (G2 − βG1G3)βr2
0

)
,

J6 = r0r
(
2η2(G3G2 − G1H1) + ηk(3G3H2 − 4G2H1)

+ r0η
(
βG3(G1G2 + G0G3) − 2G0H6

)
+

(
− H6(G1 + βG3) + G2(2G3 − H2)

)
r0k

+ (H7 − β
2G1G2

3)r
2
0

)
− r0c15(−βη

2G2
2 + ηk(−H2 + 2G0G3) − H6k2

− r0ηβ(H2 + 2G0G3) + 2β(2H1 − G2
2)r0k

+ β(βG1G3 − G2)r
2
0 ), (69)

∂∆vi,KD
∂mi

=
G2mj

βr3r2
0
[J7x0 + r0J8v0] ,

J7 = (r0 − kG2)(−ηβG2
2 + H3k + (G3 − G1G2)βr0),

J8 = βG1(G3 − G1G2)r
2
0 − βη

2G3
2 + ηkG2H3

+ ηr0βG2(G3 − 2G1G2) + (H6 − βG3
2)r0k . (70)

As above, the derivatives of ∆xj ,KD and ∆vj ,KD with respect to mj

look identical save for replacing mj with −mi .
This completes the computation of the Jacobian of the drift plus

Keplerian evolution of bodies i and j with respect to one another.
Next, we describe the derivatives of the drift step applied at the start
and end of each time step.

4.6 Drift

The drift of an individual body is given by

xi(t + h) = xi(t) + hvi(t), (71)
vi(t + h) = vi(t). (72)

This has the straightforward differential of

δxi(t + h) = δxi(t) + hδvi(t) + δhvi(t), (73)
δvi(t + h) = δvi(t). (74)

There are two stages at which the drifts are applied: all particles
drift at the start and end of eachAHL21 stepwith a duration h/2 (see
algorithm 2). We refer to this as JD(h) for drifting all of the planets.
In some cases it proves to be faster and sufficiently accurate to use
instantaneous kicks between pairs of bodies rather than solving the
Kepler problem; we now turn to describing this option.

4.7 Derivative of kicks

Hernandez & Bertschinger (2015) show that for some pairs of par-
ticles (typically distant or unbound), sufficient accuracy may be
obtained by applying a gravitational kick between particles, rather
than a Keplerian step and negative drift. Letting A be the set of pairs
advancedwith drift+Kepler steps, then AC is the complementary set
which receives pairwise kicks. Algorithm 2 implements this method
by applying the pairwise kicks after the initial drifts (to set AC ) for
a time step h/6, then after the combined drift-Kepler is applied to
set A, a second set of kicks is applied for a time step 2h/3, and
then after the Kepler-drift step is applied to A, there is a final set of
pairwise kicks applied to AC for a time h/6 before the final drifts
(on set AC ).

For a pair of particles i and j, the kicks applied over a time
step h are given by:

∆vi = −h
Gmjxi j

r3
i j

,
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12 E. Agol et al.

∆vj = h
Gmixi j

r3
i j

, (75)

where, as above, xi j = xi − xj , ri j = |xi j |, which has derivatives
given by

δ∆vi = −h
Gmj

r5
i j

[
xi j

δmj

mj
r2
i j + wi j

]
, (76)

δ∆vj = h
Gmi

r5
i j

[
xi j

δmi

mi
r2
i j + wi j

]
, (77)

wi j = δxi jr2
i j − 3xi jxi j · δxi j . (78)

These differentials yield a Jacobian for the kicks between all pairs
of bodies in AC . We now move on to describing the derivatives of
the high-order correction which is used to improve the order of the
algorithm.

4.8 Derivative of correction

Dehnen & Hernandez (2017) reduced the error in the Hernandez
& Bertschinger (2015) mapping, obtaining a symplectic integrator
accurate to h4. We incorporate this correction into our integrator,
using α = 0 (eq. (40) of Dehnen and Hernandez 2017) which only
requires one call of the corrector in between the sequences of binary
drift-Kepler and Kepler-drift steps (in the middle of algorithm 2).

The correction is applied to the velocities, with an impulse
term for the ith body of

∆vi =
h3

24

∑
j,i

Gmj

r5
i j

Ti j, (79)

Ti j = xi j
(

2GM
ri j

+ 3ai j · xi j
)
− r2

i jai j, (80)

where M = mi + mj , ai j = ai − aj , and

ai = −
∑
j,i

Gmj

r3
i j

xi j . (81)

No correction is required for the positions. We will define a constant
C = (Gh3)/24 in what follows.

The derivative of this correction term can be computed in two
steps, first computing the derivative of ai , and then the derivative
of ∆vi ,

δai = −
∑
j,i

Gmj

r5
i j

[
xi j

δmj

mj
r2
i j + δxi jr

2
i j − 3xi jxi j · δxi j

]
, (82)

δ∆vi = C
∑
j,i


δmj

r5
i j

−
mj

r6
i j

5xi j · δxi j
ri j

 Ti j

+ C
∑
j,i

mj

r5
i j

δTi j, (83)

with

δTi j = δxi j
(

2GM
ri j

+ 3ai j · xi j
)

+
2GMxi j

ri j

(
δmi + δmj

M
−

xi j · δxi j
r2
i j

)
+ xi j

(
3xi j · δai j + 3ai j · δxi j

)
− 2(xi j · δxi j )ai j − r2

i jδai j . (84)

When implementing these equations as computer code, we pre-
compute and store the dot products to save computational time.

The overall Jacobian for this step is given by J4th(h), which
is the identity matrix for the position and mass component, and is
given by ∂∆vi/∂xj for the offdiagonal components relating bodies
i and j. With the Jacobians now defined for each component of a
time step, we next describe how we combine these into the Jacobian
of a full time step.

4.9 Jacobian of a time step

With the Jacobian transformations computed at each step of algo-
rithm 1, we can now compute the complete derivative of each transit
time with respect to the initial conditions, keeping track of the prod-
uct of Jacobians throughout 1. Now, in each case we compute the
change in the coordinates over a time step, and so the Jacobian of
each substep has the form:

Jsubstep = I + ∆Jsubstep, (85)

where ∆Jsubstep is the Jacobian of the change in coordinates at the
end of the substep with respect to the coordinates at the beginning
of the substep. Consequently, the Jacobian can be written as:

Jcurrent = (I + ∆Jsubstep)Jprior
= Jprior + ∆JsubstepJprior. (86)

The propagation of the Jacobian involves adding terms to the prior
Jacobian as a function of each substep. Now, when the timestep is
small, this involves very small additions to the Jacobian which can
increase the impact of round-off error during the propagation of
the derivatives. To mitigate the impact of this, we use compensated
summation (Kahan 1965).

As an example, in the 3-body case, an individual AHL21 step
looks like:

JAHL21(h) = (I + ∆JD(
h
2 ))(I + ∆JDK,12(

h
2 ))

(I + ∆JDK,13(
h
2 ))(I + ∆JDK,23(

h
2 ))

(I + ∆J4th(h))
(I + ∆JKD,23(

h
2 ))(I + ∆JKD,13(

h
2 ))

(I + ∆JKD,12(
h
2 ))(I + ∆JD(

h
2 )). (87)

In this example we do not use fast kicks for any pair of bodies. Note
that each Jacobian in this product is computed with the updated
state of the system from the prior substep.

We have also implemented a version of the integrator which
allows the drift + Kepler interactions to be replaced with kicks for
some subset of pairs bodies (§4.7). For this version of the integrator
an additional three Jacobians must be multiplied.

After taking n + 1 steps whereby the first transit occurs in
between steps n and n+1, a substep is taken to find the intermediate
time, ∆t = t − nh− t0, which minimizes the sky separation between
the two bodies at time t. To compute the derivatives of the times of
transit requires computing the Jacobian of a step with intermediate
time ∆t, which is used to compute the derivatives of the time of
transit with respect to the initial conditions, which we describe
next.

4.10 Time derivative of a step

The derivative of the positions and coordinates as a function of
the time step duration, ∆t, requires a propagation of the time step
derivative through all of the substeps of a single time step. The
involves applying the chain rule through each of the sub-steps in
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Derivatives of TTVs 13

algorithm 2. Let qcurrent be the coordinates and velocities of all
bodies at one component of a substep. Then,

dqcurrent
d∆t

= (I + ∆Jsubstep)
dqprior

d∆t
+
∂∆q
∂∆t

����
qprior

, (88)

where ∂∆q
∂∆t is the partial derivative of a particular sub-step with

respect to the time step ∆t. Note that in the AHL21 algorithm (2),
the combined drift and Kepler steps take place over a time∆t = h/2,
which introduces a factor of 1/2 in the partial derivativeswith respect
to h.

At the end of the step we refer to the derivative over the time
step with respect to ∆t as:

dq(t)
d∆t

, (89)

where t is the total simulation time upon completion of the time
step of duration ∆t. This may then be used to compute the transit
times and their derivatives, as described next.

4.11 Derivative of transit times

We define the times of transit between bodies i and j as the point
in time where the sky-projected separation is at a minimum, and
body i is in front of body j (Fabrycky 2010). Since multiple transits
can occur between two bodies, we count these with a third index, k,
so that the set of transit times during the time integration is given
by

{
ti jk ;∀i, j, k

}
. At a transit time, the sky-velocity between the

two bodies must be perpendicular to their sky separation, where the
“sky plane" is the x − y plane; this guarantees an extremum of the
sky separation between the bodies. The dot product of the relative
sky separation and sky velocity of the two bodies equals zero at the
time of transit, and is negative/positive just before/after transit. So,
transit times are computed from the constraints

gsky,i j (ti jk ) = (xi − xj )(vx,i − vx, j ) + (yi − yj )(vy,i − vy, j ) = 0
zi < zj

dgsky,i j
dt

> 0, (90)

where i is the index of the planet, and j is the index of the star
(Fabrycky 2010), and k is an index for the number of transits between
the bodies.

Throughout the time-integration of a system, transits between a
planet and star (or any pair of bodies) are checked for by identifying
when gsky,i j (t) changes sign from negative to positive between two
time steps, and the planet (or occultor) is nearer to the observer
than the star. Once a transit time has been identified as occurring
between time steps n and n+1, where tn = t0 +nh, by the condition
gsky,i j (tn) < 0 and gski,i j (tn+1) > 0 and zi(tn) < zj (tn), then the
time of transit is solved for with Newton’s method,which makes use
of our Jacobian calculation. Newton’s method is applied to obtain
the time ti jk = tn + ∆t, where ∆t is the time after tn at which
gsky,i, j = 0, which is taken as the time of transit. The initial guess
for the time of transit, ∆tinit, is found by linear interpolation,

∆tinit = −
gsky,i j (tn)h

gsky,i j (tn+1) − gsky,i j (tn)
. (91)

To implement Newton’s method, the system is integrated in
between these time steps with a single AHL21 step, but with a time
∆t < h, instead of h, giving q(tn + ∆t). From these coordinates,
gsky(tn+∆t) is computed between the two bodies, and refined using

δ∆t = −gsky

( dgsky
dti jk

)−1
, (92)

where
dgsky
dti jk

= xi j

(
dvx,i
d∆t

−
dvx, j
d∆t

)
+ yi j

(
dvy,i
d∆t

−
dvy, j
d∆t

)
+ vx,i j

(
dxi
d∆t
−

dxj
d∆t

)
+ vy,i j

(
dyi
d∆t
−

dyj
d∆t

)
, (93)

and xi j = xi − xj , etc., and the time derivatives with respect to
∆t are computed with equation (89). Note that in practice since
the integration time step, h, is fixed, for the transit time derivatives
δti jk = δ(∆t).

Once a transit time is found, how does it vary with the initial
conditions? We focus on the initial conditions just before transit
at time tn, qn = q(tn). If qn is perturbed slightly, then the time
of transit will change, but the new time of transit must still satisfy
gsky,i j (ti jk + δ∆t) = 0, where the new time of transit is at tn +∆t +
δ(∆t). So,

∂gsky
∂qn

δ(qn) +
dgsky

dt
δ(∆t) = 0, (94)

where we have dropped the i, j, k subscripts from t in this equation.
Thus the gradient of each transit time with respect to the state,

qn = q(tn), at the beginning of the nth time step just preceding the
transit is given by

d(∆t)
dqn

= −

( dgsky
dti jk

)−1 [(
∂xi
∂qn
−
∂xj
∂qn

)
(vx,i − vx, j )

+

(
∂vx,i

∂qn
−
∂vx, j

∂qn

)
(xi − xj )

+

(
∂yi
∂qn
−
∂yj

∂qn

)
(vy,i − vy, j )

+

(
∂vy,i

∂qn
−
∂vy, j

∂qn

)
(yi − yj )

]
, (95)

where the gradients are computed over the partial time step, so that,
for example, ∂x j

∂qn
is the component of JAHL21(∆t) associated with

the x-component of body j. Note again that the transit time is ti jk =
t0 + nh + ∆t, but since h and t0 are fixed, dti jk/dqn = d∆t/dqn.

In addition to the transit time, ti jk , it is also useful to com-
pute the sky velocity, vsky,i jk , and the impact parameter squared,
b2

sky,i jk , at the time of transit. These can be used to compute transit
light curves, as well as measure the variation of the impact pa-
rameter and duration as a function of time as additional dynamical
constraints on a system. These two quantities are given by:

vsky,i jk (qn, ti jk ) =
√
(vx,i − vx, j )2 + (vy,i − vy, j )2, (96)

b2
sky,i jk (qn, ti jk ) = (xi − xj )2 + (yi − yj )

2, (97)

where there is a direct dependence upon qn which is propagated to
the time of transit within the timestep, ∆t, and there is an indirect
dependence upon qn through the fact that these are evaluated at the
time of transit, ti jk (qn).

Taking the derivative of these with respect to qn gives:

dvsky,i jk
dqn

=
∂vsky,i jk
∂qn

+
dvsky,i jk

d∆t
∂∆t
∂qn

, (98)

∂vsky,i jk
∂qn

= v−1
sky,i jk

[
(vx,i − vx, j )

(
∂vx,i

∂qn
−
∂vx, j

∂qn

)
+ (vy,i − vy, j )

(
∂vy,i

∂qn
−
∂vy, j

∂qn

) ]
, (99)
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dvsky,i jk
d∆t

= v−1
sky,i jk

[
(vx,i − vx, j )

(
dvx,i
d∆t

−
dvx, j
d∆t

)
+ (vy,i − vy, j )

(
dvy,i
d∆t

−
dvy, j
d∆t

) ]
, (100)

db2
sky,i jk
dqn

= 2

[
(xi − xj )

(
∂xi
∂qn
−
∂xj
∂qn

)
+ (yi − yj )

(
∂yi
∂qn
−
∂yj

∂qn

) ]
. (101)

Note that we compute b2
sky rather than bsky to avoid the problem

that when the orbits are edge-on, the impact parameter is zero at
mid-transit, causing the derivative of bsky to be divided by bsky = 0,
which results in a NaN.

This completes the computation of all of the Jacobians needed
to propagate the derivatives of the transit times, and sky veloc-
ity/impact parameter, through to the initial conditions, which we
describe next.

4.12 Jacobians of positions, velocities, transit times

With the Jacobians computed at each of the steps, we can recursively
compute the Jacobian at step n with t = t0 + nh as

Jn = JAHL21(h)Jn−1. (102)

Starting with the initial state q0 = q(t0) and initial Jacobian J0 =
∂q0
∂q0
= I (the identity matrix), we iteratively compute the Jacobian

at step n with respect to the state at initial time, t0 (n = 0), giving
the Jacobian transformation from q0 to qn,

Jn =
∂qn
∂q0

. (103)

Then, the gradient of the transit times is given by

d∆t
dq(t0)

=
d∆t

dq(tn)
Jn . (104)

We save this gradient for each transit time in an array that is
pre-allocated when calling the routine.

This completes the description of the computation of the gra-
dient of each transit time with respect to the initial conditions,
including the masses.

With the completion of the description of the algorithm and its
derivatives, we turn to the implementation and testing of the code.

5 IMPLEMENTATION AND TESTING

We have developed a code in the Julia language for carrying out
the foregoing computations.6 This involves the initialization of the
algorithm, the N-body integration, the finding of transit times, and
the Jacobian propagation. Given the complicated nature of the cal-
culations, we have written unit tests for each of the steps in the
algorithm; these were critical in developing the code for computing
the derivatives, and helped to pinpoint inaccuracies in the DH17
algorithm which led to developing the AHL21 algorithm. We have
also created tests of the code as a whole, and carried out com-
parisons with other codes for both speed and accuracy, which are
summarized here.

6 http://github.com/ericagol/NbodyGradient.jl

In this section we describe some aspects of the implementa-
tion of the code (§5.1) and the tests we have carried out. We test
the N-body algorithm for accuracy by varying the step size and
checking for conservation of energy and angular momentum (§5.2),
while we check the transit-time algorithm for accuracy by measur-
ing the variation in transit times with step size (§5.4). We compare
the N-body integrator with a C implementation to check for speed
(§5.3).We check the numerical precision of the code by carrying out
comparisons with extended precision (§5.5), and we check the accu-
racy of the derivatives by comparing with finite-differences carried
out in extended precision (§5.5). Most of our tests are carried out
with integrations of the outer Solar System and of the TRAPPIST-1
system.

We start by describing the implementation of the algorithm in
Julia.

5.1 Julia implementation

We chose the Julia language to develop this code (Bezanson et al.
2017), given its several advantages. The high-level, interactive
(“REPL") capability can make debugging code more straightfor-
ward. The just-in-time compiler can make the code execution com-
petitive with compiled C, if attention is paid to memory allocation
and type stability. An advantage of Julia for testing code accuracy
is that different numerical types can easily be changed which al-
lows for straightforward computation at different precisions. Julia
also uses multiple dispatch which allows us to automatically select
versions of functions that match in precision, and gives us control
over computing gradients, transit times, and other outputs. Finally,
Julia is open-source, and thus amenable to distribution and usage
amongst scientists.

We have optimized the code keeping inmind several unique as-
pects of Julia. Memory allocation and garbage collection were min-
imized by defining arrays at higher levels which were then passed
to subroutine functions to avoid repeated allocation of large arrays.
Matrix multiplication can be sped up by utilizing the BLAS linear
algebra routines (Blackford et al. 2002), specifically gemmv, which
gave significant reduction in run-time for the multiplication of Ja-
cobians at each step. For multiplication of the JK,i j Jacobian, we
found more efficiency by copying the portion of Jn (times the prior
substeps) relevant to bodies i and j to a new 14 × 7N matrix, then
using the BLAS routine to carry out the multiplication, and then
copying the result back into Jn. For loops in which we access ele-
ments of arrays successively, we try to step through elements which
are adjacent in memory, and we also avoid index-checking to save
time. Finally, we try to avoid changing the types of variables, and
we define the types up front to make this explicit. Thanks to these
details, we find a favorable run-time comparison with C (§5.3).

Another aspect of our implementation is that the code is simple
to use and extendable. Here is an example of running the integrator
and computing transit times interactively from the Julia prompt
(REPL), or from within a Jupyter or Pluto notebook7 (a slightly
modified version of the script used in the comparisons with other
codes in §6):

using NbodyGradient

# Set up initial conditions from file of orbital elements

7 Further details on running the code can be found in the documentation at
http://github.com/ericagol/NbodyGradient.jl
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# (Initial time, # of bodies, orbital elements file)
ic = ElementsIC(0.0, 8, "elements.txt")
# Time step. Period of planet b / 100
h = elements[2,2]/100
# Set up integrator (time step, initial time, elapsed time)
intr = Integrator(h, 0.0, 4533.0)
# Compute and store initial Cartesian coordinates
s = State(ic)
# Allocate arrays for transit times and derivatives
tt = TransitTiming(intr.tmax, ic)
# Run integration & compute transit times w/ derivatives.
intr(s, tt)

Here, the initial conditions are specified by a file containing rows
of orbital elements, elements.txt8. An integration is triggered
by passing a structure of State type (s in the example) to an
Integrator (intr in the example), along with any “output” type
(tt in the example): intr(s,tt). The State holds the Cartesian
coordinates and Jacobian which are updated at each step. Passing
the output structure tt of type TransitTiming tells the integrator
to compute transit times of the system and store the results in the
tt structure. The transit times can be accessed within the structure
as tt.tt, which is a two dimensional array of size N by Ntt , which
holds the transit times for each planet, each of which have a count
in the vector tt.count with a maximum allowed value of Ntt .
The derivatives with respect to the initial Cartesian coordinates
and masses are stored as tt.dtdq0 which is a 4-dimensional array
with the same first two dimensions as tt.tt, and the last two
dimensions of sizes 7 and N which hold the derivatives with respect
to x, v, and m for each body (q0). By utilizing multiple dispatch,
adding functionality to the code consists of simply making a new
Integrator method and a structure to hold the output.

Next, we describe the accuracy of the N-body algorithm by
checking conservation of energy and angular momentum.

5.2 Energy and angular momentum conservation

To test the accuracy of the algorithm, we have carried out integra-
tions of the outer Solar System. We start with positions, velocities,
and masses given in Hairer et al. (2006), only including the giant
planets (Jupiter, Saturn, Uranus and Neptune). The mass of the Sun
is added to the sum of the masses of the terrestrial planets for a fifth
inner body.

We compute the total energy and angular momentum of the
system as a function of time. We measured the RMS value for the
energy and all three components of the total angular momentum,
and varied the time steps by factors of two. We expect the energy
precision to scale with time step to the fourth power, ∝ h4. Figure 3
shows that this scaling holds over a range of two orders ofmagnitude
in the time step. We used time steps from 1.5625 to 200 days, and
the RMS energy and angular momentum was measured over ≈ 106

time steps in each case. The upper end of the time steps was set by
the requirement that the time step be smaller than 1/20 of the short-
est orbital period, in this case Jupiter. At the lower end of this range

8 We leave discussion of initial conditions to future work, but for sake
of completeness the elements file is set up as follows. Each row is given
by the mass, period, time of initial transit, eccentricity vector components,
Inclination, Long. of Ascending Node for each body, and delimited by a
comma (’,’). The eccentricity vector is defined by (ecos($), esin($)) where
e is the eccentricity and $ is the long. of periastron. The orbital elements
are given in Jacobi coordinates which are converted to Cartesian coordinates
to start the integration.

(1.5625 and 3.125 days) we see a deviation from the h4 scaling
thanks to the limit of double-precision representation of the energy.
This occurs at approximately 2−52 = 2.2×10−16 of the absolute er-
ror value of each conserved quantity, which is plotted as dotted lines
in each panel in Figure 2 (the energy is ≈ −3× 10−8M�AU2day−2,
while the total angular momentum is ≈ 6 × 10−5M�AU2day−1).
The three components of angular momentum show a better conser-
vation precision which is close to double-precision for all values
of the time step. Numerical errors accumulate with time step, and
the expectation is that these scale as ≈ εh1/2t1/2 = εhN1/2

S
, where

NS is the number of time steps and ε is a random numerical er-
ror (Hairer et al. 2008). This is also borne out in Figure 3 which
a scaling of the error with time step h (NS is held fixed in these
integrations).

Our conclusion is that the numerical integration is behaving
as expected: energy is conserved with an accuracy ∝ h4 above the
double-precision limit, and angular momentum is conserved close
to double-precision, but grows according to Brouwer’s law. Note
that the RMS relative error (defined as ∆E/E0, with E0 the initial
energy, and ∆E the change in this energy) measures an oscillation
which can be orders of magnitude larger than the mean relative error
over time.

Given this evidence of accurate behavior of the N-body algo-
rithm, we next ask: how does the N-body implementation fare in
computation time?

5.3 Comparing with C implementation

To check that we have optimized the computational speed of the N-
body integrator, we carried out a comparison of the Julia version of
our code with a C implementation without derivatives (Hernandez
2016). First, we compared the Kepler solver (Wisdom & Hernan-
dez 2015) and found that our Julia implementation matches the C
version. Both versions take 0.15 µ sec per Kepler step for a bound
orbit with e = 0.5.9 Note that in this comparison we used a version
of the Kepler step which is not combined with a backward drift.

Next, we carried out an integration of the outer solar system
(with 5 bodies, as described in the prior section) with the C imple-
mentation. We found that the C implementation runs at the same
speed as our Julia implementation of AHL21. With 50-day time
steps, both versions take about 4.7 µsec per timestep.10 In this com-
parison, we use the same convergence criterion for theKepler solver;
when we include the 4th-order corrector in AHL21 it increases the
run time by ≈ 10% for the outer solar system problem. Thus, we
conclude that the speed of the Julia implementation is comparable
to compiled C.

When using the convergence that a fractional tolerance of 10−8

is reached for the solution to Kepler’s equation –we find a bias in the
long-term energy conservation which causes it to drift with time. If
instead we use the convergence criterion that the eccentric-anomaly,
γ, remains unchanged relative to one of the prior two iterations
of Newton’s solver – then we find that this bias is significantly
reduced. This adds iterations to the Kepler-solver, typically 1-2, and
thus causes the code to take about 10% longer to run, but with the
trade-off of better energy conservation. Thus, using the 4th-order
corrector and this criterion adds about 20% to the overall run-time,

9 These comparisons were made on a Macbook with a 2.8 GHz Intel Core
i7 processor with Julia v1.6. The C code was compiled with cc -O3.
10 See footnote 9.

MNRAS 000, 1–22 (2020)

Page 15 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 E. Agol et al.

101 102

Time step [days]

10 21

10 20

10 19

An
gu

la
r m

om
en

tu
m

 e
rro

r [
M

 A
U2  d

ay
1 ]

Lx

Ly

Lz

Figure 3. (Top) Conservation of energy. Standard deviation of energy ver-
sus step size (blue dots). Orange line shows h4 scaling. Green dotted line
shows double-precision limit. (Bottom) Angular momentum conservation.
The standard deviation of each component is plotted versus step size. The
dotted lines shows the double-precision limit for angular momentum (Ly

is zero, so this is not shown). The black dashed curve shows that angular
momentum error scales ∝ h according to Brouwer’s law.

amounting to 5.7 µsec per time-step compared with the example
above.

Now that we have verified the speed and accuracy of the N-
body algorithm, we next examine the accuracy and precision of the
transit times as a function of step size.

5.4 Transit-timing accuracy

Since the numerical accuracy of the integration depends upon the
step size parameter, h, as the AHL21 integrator is fourth order in
h (Fig. 3), we also expect that the accuracy of transit times should
scale with h4. Further precision could be obtained if we were to use
a corrector at the start of the integration; however, such a corrector
is left for future work.

Figure 4 shows the change in the transit times with stepsize for
a simulation of TRAPPIST-1 b and c over 400 days. Compared with
the times computedwith a very small step-size, the transit times drift
with time. This behavior is expected due to the difference between
the symplecticHamiltonian and the full Hamiltonianwhich contains

high-frequency terms which cause the coordinates of the symplectic
integrator to be offset from the real coordinates. This offset causes
the longitudes to drift with time, and due to the slight difference in
orbital frequency, the drift grows linearly as shown in Figure 4. Since
the AHL21 algorithm has order h4, these offsets decrease with step-
size as h4 (Fig. 4), and so at small stepsize the symplectic integrator
better approximates the real system. In practice these coordinate
offsets are not expected to be important for transit-timing analyses
as they will lead to very small differences between the inferred
parameters and real parameters, even for large h. We recommend
that the user determine which step size is appropriate by checking
the difference in transit times as a function of step size.

For the purposes of transit-timing variations, we are primarily
interested in the precision of the non-linear portion of the transit
times versus epoch. So, to assess the TTV precision, we subtract
a linear fit from the difference between an integration with large h
with an integration with small h, and then compute the RMS of the
residuals. We expect the RMS to scale as h4, and figure 4 indeed
shows that this is the case for large step size for a system with two
planets of periods 1.5 and 2.4 days, masses 3 × 10−5 of the star,
low eccentricity, and integrated over 400 days (this approximates
the inner two planets of the TRAPPIST-1 system). In both cases
the TTV precision reaches a value that is ≈ 10−14 of each planet’s
orbital period. We also find that this precision scales in proportion
to the ratio of the masses of the planets to the star, as expected (see
discussion under eq. (2)).

Having demonstrated that the accuracy of the transit times
scales as expected, we next examine the numerical precision of the
computed times, as well as their derivatives.

5.5 Precision of transit times and their derivatives

Given a fixed step size for the algorithm, we next ask the question:
how numerically precise are the transit times computed for that step
size? And, how precise are the derivatives computed as a function
of the initial conditions? These questions involve the control of
truncation and round-off errors in the algorithm, which motivated
the development of the AHL21 algorithm.

We check the numerical precision of the algorithm by compar-
ing the transit times and their derivatives computed at both double-
precision and extended precision (using the double-precision
Float64 type with 64 bits, and the extended-precision BigFloat
type with 256 bits in Julia). Figure 5 shows the difference in
the times of transit in the TRAPPIST-1 b and c case computed in
double-precision relative to BigFloat precision. We find that the
computational errors grow at a rate that is bounded by≈ 2−52hN3/2

S
,

where NS is the number of elapsed time steps (Fig. 5), as expected
for phase-errors based on Brouwer’s Law (Brouwer 1937). The
computation was carried out for 400,000 days for an inner orbital
period of 1.5 days, for a total of ≈ 107 time steps.

Next, we carry out tests of the numerical precision of the
Jacobians at each substep in the calculation, as well as for the entire
integration interval, and for the transit time derivatives.We do this in
two ways: 1). by computing finite-difference derivatives in extended
precision and 2). by comparing the derivatives in double precision
with derivatives computed with extended precision arithmetic. The
finite-difference test checks that the formulas derived in §4 are
valid, while the extended precision test checks that the numerical
implementation is precise.

To compute the finite-difference derivatives, we carry out inte-
grations for each parameter using BigFloat, and compute a finite
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Figure 4. (Left) Variation in the transit times with step size. The absolute
value of the difference in times between the indicated step size and a step
size of h/128 is plotted for the inner two planets of TRAPPIST-1 (solid
and dashed, respectively) simulated over 400 days with a nominal step
size of h = 0.06 days. The dotted curve shows a linear scaling, while the
arrow indicates a 1/24 decrease in timing difference when the step-size is
halved. (Right) RMS precision of TTVs for the TRAPPIST-1 b/c two-planet
system with six stepsizes, compared with an integration which is 1/2 of the
shortest stepsize, after removing a linear fit from the difference to isolate the
comparison to the transit-timing variations. For both planets the TTV errors
scale as h4 until double-precision is reached at ≈ 10−9 seconds.

difference approximation of the partial derivative with parameters
perturbed just above and below the nominal value,

∂t
∂qi, j

≈
∆t
∆qi, j

=
t(qi, j (1 + ε)) − t(qi, j (1 − ε))

2εqi, j
, (105)

where t(qi, j ) indicates the transit time evaluated at initial conditions
q0 with the i, jth initial condition given by qi, j . Typically we use ε =
10−18, and we find that the finite-difference derivative is insensitive
to this value when rounded back to double-precision. We used these
finite differences in writing and debugging each substep of the code,
and we have created a suite of tests which can be used when further
modifying or developing the code.We found that the finite difference
derivatives agree with the derivatives computed from propagating

the Jacobian, at a level close to the double-precision limit, which
validates our implementation of the algorithm based on the formulae
in §4.

Next, we estimate the fractional numerical errors on the deriva-
tives of the transit times with respect to the initial conditions and
masses propagated through the numerical integration (Fig. 5, right
panel) by comparing the derivatives computed at double precision
with those computed at extended precision. We find that these
double-precision numerical errors also shows a growth which is
bounded by 2−52N3/2, according to Brouwer’s Law. In this case we
filtered the derivatives before computing the fractional error taking
the maximum absolute value of each derivative over 20 transit times
normalized by the maximum absolute derivative over the same 20
times to avoid the case in which the values of the derivatives ap-
proach zero. We did not find that the Brouwer’s law limit applied
to be the DH17 algorithm - the errors significantly exceeded the
Brouwer’s law limit for long integrations - which motivated the de-
velopment of the AHL21 algorithm. We did not carry out longer
integrations due to the high computational expense for BigFloat
precision.

We conclude that based on these tests the code is performing as
expected: the N-body code is fast and as accurate as the algorithm
allows; the transit times are precise; the derivative formulae are
correct; and the derivatives are precise. With these validations of
the code completed, we now turn to compare our code with other
publicly-available N-body and transit-timing codes.

6 COMPARISONWITH OTHER CODES

In this section we compare with two existing open-source N-body
integrators which have been used for transit-timing and N-body in-
tegration: TTVFast and REBOUND. Although other codes are avail-
able, such as SYSTEMIC (Meschiari & Laughlin 2010) and TRADES
(Borsato et al. 2014), as well as numerous proprietary codes for
modelling transit timing, TTVFast and REBOUND are both widely-
used and open-source. These comparisons provide further valida-
tion of the accuracy of our code, as well as timing benchmarks of
the relative speeds.

6.1 Comparison of transit times with TTVFast and
REBOUND

The TTVFast approach uses a Wisdom-Holman integrator (Wis-
dom & Holman 1991) with a central dominant body, appropriate
for planetary systems orbiting a single star (or planets orbiting a
single star in a wide binary). A third-order corrector is used at the
start of each simulation to transform from real coordinates to sym-
plectic coordiates. Two versions of TTVFast have been developed in
FORTRAN and C; here we describe comparisons with the latter.11

The initial conditions may be specified in either Jacobi or heliocen-
tric orbital elements, or heliocentric Cartesian coordinates. We use
the initial Cartesian coordinates from NbodyGradient transformed
to heliocentric coordinates, and then rotated by 180◦ about the y

axis so that the observer is located along the +z axis, the convention
adopted in TTVFast.

The TTVFast algorithm uses an approximate method to find
times of transit. When a transit time is found to occur for one of
the planets between two timesteps, then two Keplerian integrations

11 https://github.com/kdeck/TTVFast
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Figure 5. (Left) Fractional numerical error of transit times computed over
40,000 days for TRAPPIST-1 b and c computed from double and BigFloat
integrations. The error is plotted relative to the time ste, h. (Right) Fractional
numerical error on the transit time derivatives with respect to the initial
cartesian coordinates and masses. The dotted green lines in both panels
scale as 2−52N

3/2
S

, where NS is the number of time steps. The maximum
absolute derivative differences have been taken over 20 steps, and divided
by the maximum absolute derivatives to give the fractional differences.

between the planet and star are integrated forwards and backwards
from the prior and subsequent timesteps, and weighted to approxi-
mate the position of the planet relative to the star. Newton’s method
is then used to find the time of transit in the same manner described
above (§4.11).

We have made a comparison of the transit times from Nbody-
Gradient with TTVFast using the best-fit initial conditions for the
7-planet TRAPPIST-1 system (Agol et al. 2021). For this compari-
son we use a time step for TTVFast which is 0.05%12 of the orbital
period of planet b (Figure 6) to reduce the difference between the
symplectic and real coordinates (we use a larger step of 0.1% for
NbodyGradient as this integrator is higher precision). We find that

12 We also had to modify TTVFast to avoid accumulation of numerical
errors which occur for such a small timestep. Rather than adding the time
step to the elapsed time every time step, we multiply the current number of
steps by the time step to obtain the elapsed time.

over a timescale of ∼4532 days (an estimate of the total time be-
tween initial and final TRAPPIST-1 observations over the lifetime
of JWST), the difference between TTVFast and NbodyGradient is
better than a few milliseconds for all seven planets, with better
agreement for the inner planets than for the outer. This agreement is
quite good, and we attribute the remaining differences, which grow
with time, as being due to differences between the initial mapping
and real coordinates which cause phase errors to grow with time.

Although REBOUND is not primarily designed for transit-timing,
there is a Python notebook in theREBOUND repositorywhich gives
an example of transit-time computation.13 We used the same ini-
tial cartesian coordinates as the NbodyGradient computation for
TRAPPIST-1, and computed the transit times with a tolerance of
10−12 days for REBOUND. We transform z→-x, x→y, and y→-z
to allow for the fact that the REBOUND computation places the
observer along the x axis rather than along the -z axis (as assumed
in NbodyGradient, Fig. 2). Figure 6 shows that over 4000 days for
TRAPPIST-1, the times agree between NbodyGradient and RE-
BOUND at the < 4µsec level. This was computed with a time step
of 0.0015 days for NbodyGradient, about 1/1000 of the orbital pe-
riod of the inner planet, TRAPPIST-1b, to reduce the difference
between the symplectic and real coordinates.

Unfortunately TTVFast does not include derivatives, which
was part of the motivation for developing the NbodyGradient code.
However, given that the transit times compare well, and that we have
compared the NbodyGradient derivatives with finite-differences
computed at high precision (§5.5), this gives us confidence that
the NbodyGradient derivatives are also being computed accurately.
We have made scripts available for reproducing this comparison in
the NbodyGradient repository.

Next we compare the run-time of NbodyGradient with RE-
BOUND, with and without gradients.

6.2 Run-time Comparison with REBOUND

The REBOUND integrator ias15 (Rein & Tamayo 2015) allows for
the computation of the variational equations tomachine precision.14

Figure 7 compares the REBOUND ias15 integrator computational
speedwith our code.We spaced planets by a ratio of semi-major axis
of 1.8, and with initial orbital angles separated by 1.4 radians. For
the AHL21 integration, we use a step size that is 1/20 of the orbital
period of the inner planet and we integrate for 800 orbits of the
inner planet. We ran both codes with a range of planets from one to
ten, and we turned off the transit finding to make a fair comparison.
We tried two different versions of the AHL21 integrator: with fast
kicks for non-adjacent pairs of planets, and with fast kicks turned
off. When the fast kicks are used for non-adjacent planets, we find
that the AHL21 code compares well to REBOUND when no gradients
are computed, either slightly faster or comparable in wall clock
time for 1-10 planets (dashed lines in Figure 7). However, when the
gradient is computed, our code takes a computational time that is
≈ 4−5 times faster than REBOUND for a large number of planets when
fast kicks are turned off. If the fast-kicks are used for non-adjacent
planets, then the NbodyGradient is an order of magnitude faster
than the ias15 integrator in REBOUND. Note that both REBOUND
gradients and NbodyGradient assume the Newtonian equations of
motion when computing gradients.

13 See https://rebound.readthedocs.io/en/latest/ipython/
TransitTimingVariations.html for a description.
14 https://github.com/hannorein/rebound
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Figure 6. Transit-timing comparison for TRAPPIST-1. (Left) TTVs from NbodyGradient (in color), and TTVFast and REBOUND (black dots) for the seven
TRAPPIST-1 planets over 4000 days. (Right) Timing differences in seconds between NbodyGradient and TTVFast (top) and REBOUND (bottom); the colors
are same as in left hand panel. Note that the panel in the upper right has a range which has been expanded by 6× 106 relative to the left panels, while the lower
right panel is expanded by a factor of 1.2 × 1010.

Our primary goal in developing this N-body code is for model-
ing observational data for which the uncertainties are typically dom-
inated by measurement errors rather than model accuracy. Hence,
we are willing to exchange some accuracy for computational speed
by using a symplectic integrator with a large time step. Note that
the integrator is still precise, but the symplectic Hamiltonian only
approximates the real Hamiltonian, and we have not been able to
derive a corrector to transform between symplectic and real co-
ordinates; see the discussion in Deck et al. (2014) and references
therein.

In short, NbodyGradient can gain some computation time with
the tradeoff of interpreting the initial conditions as symplectic coor-
dinates, not real coordinates. In addition, currently REBOUND does
not yet implement the gradients of the transit times with respect
to the initial conditions, which NbodyGradient was designed to
compute from the start.

7 SUMMARY AND CONCLUSIONS

The original goal of our development of this paper and code was
to make possible the analytic computation of the derivatives of the
times of transit with respect to the initial conditions; this is the
first time this has been done in an N-body code to our knowledge.
We have accomplished this with a fast and robust code written in
the Julia language. Julia has the advantage of matching compiled
C speeds if it is written in an optimum manner, which our bench-
marks indicate we have achieved. Yet it allows for interactive usage
and high-level coding which makes building and debugging the
code more straightforward. In addition, Julia easily allows chang-
ing of the variable types, so that higher-precision computations are
available simply by calling the N-body functions with coordinates
and masses initialized with high-precision variables; the functions
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Figure 7. Computational time of our code without (blue), with fast kicks for
non-adjacent planets (green), and with transit-time computation (magenta)
versus REBOUND ias15 (red), with (solid) and without (dashed) computation
of the gradient.

will be automatically recompiled at the first time being called with
different numeric types.

We have also developed this code with generality in mind;
in particular, we would like to eventually apply it to hierarchical
systems such as circumbinary planets or planets hosting moons,
which is why we have based the symplectic splitting on the DH17
algorithm which does not assume a dominant body (or bodies).
However, a drawback of the DH17 algorithm we found was the lack
of precision caused by cancellations between the backward drifts
and forward Kepler steps. We have fixed this problem by carrying
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out analytic cancellation of these expressions with modified ver-
sions of Gauss’s f and g functions. This fix creates an algorithm
which is both numerically stable and precise: energy and angular
momentum are conserved well for long integrations. The algorithm
is accurate to fourth order in time step, but even for large time steps
it will integrate the non-Keplerian perturbations between the bodies
with sufficient accuracy for observational data (and the time step
can be decreased until the desired precision is reached; this happens
rapidly thanks to the fourth-order scaling of the algorithm with time
step). This accuracy is higher order than the Wisdom-Holman sym-
plectic integrator or its versions with symplectic correctors, which
have error terms scaling as h2. As with any symplectic integrator,
the integration coordinates are offset slightly from the real coordi-
nates (Wisdom et al. 1996), which causes a long-term phase shift.
However, this shift is small, even for large time steps, and should
not affect the interpretation of the state of multi-body dynamical
systems. In practice it results in a slight offset of the initial coordi-
nates which is caused by introducing high-frequency terms in the
physical Hamiltonian.

In order to compute the derivatives of the transit times with
respect to the initial conditions, we have propagated the Jacobian of
the N-body positions and velocities with respect to the initial con-
ditions and masses throughout each timestep of the N-body integra-
tion. We have eliminated numerical cancellations in this expansion,
and used series expansions for special functions when cancellation
of the leading orders occurs. This has given an algorithm which
yields precise derivatives and which appears to adhere to Brouwer’s
law for up to 107 timesteps for the problem we tested. We also find
that it compares favorably in run time to the variational equations
integrated by Rein & Tamayo (2016), with a factor of 4-10 speed-up
for long time steps in the comparison we tested.

We have found that the derivatives make possible the optimiza-
tion of the masses of planets in the TRAPPIST-1 planetary system,
and the results compare well with an analysis with the GENGA
code (Grimm & Stadel 2014), as reported in Agol et al. (2021). In
particular, we were able to use the derivatives to efficiently find the
maximum likelihood and to compute the Hessian at the maximum
likelihood. We have also used it to find the likelihood profile as a
function of the masses of the planets and orbital parameters, as well
as to run a Hamiltonian Markov Chain Monte Carlo computation
in 35 dimensions to derive the posterior distribution for the sys-
tem parameters, which agree well with a complementary analysis
based on the code described in Grimm et al. (2018). Finally, the
derivatives enabled an efficient search for an eighth planet, which
required optimization over 40 free parameters; no strong evidence
for an eighth planet turned up in this search (Agol et al. 2021).

These analyses depend on initial conditions which were speci-
fied in terms of orbital elements, which we plan to describe in sub-
sequent work. We are also continuing to develop the output options,
API, and documentation, andwewelcome community contributions
to the code repository.15

There are some limitations to our work. Due to its symplec-
tic nature, our code does not allow for non-conservative effects to
be included, such as tidal forces, drag, or general relativity. How-
ever, these could be added in future work through the machinery
described by Tamayo et al. (2020). We assume that the masses of
the bodies are constant. We do not compute second- or third- order
derivatives, as has been implemented by Rein & Tamayo (2016).
Even so, we expect this code to find application in a wide range of

15 http://github.com/ericagol/NbodyGradient.jl

dynamical problems related to observation of exoplanetary systems
and beyond.
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Table A1: Symbols used in this paper

Symbol Definition Reference
ai Instantaneous acceleration of body i. (81)
A Set of pairs of bodies interacting via fast kicks. 4.9

AC Set of pairs of bodies interacting drift + Keplerian (complement of A). 4.9
bsky,i jk The impact parameter at the kth time of transit of body i in front of body j. §4.11

C Constant in correction term. §4.8
f ,g, Ûf , Ûg Gauss’s Kepler propagation functions. §3.2

D Distance to observer. §4.3
h Symplectic integrator time step (days). §2

JD Jacobian of drift step. §4.6
JDH17 Jacobian of symplectic step. §4.9
J4th Jacobian of fourth-order correction. §4.8
mi Mass of ith body. §4.1
N Number of bodies in system. Throughout
NS Number of time steps

qi(t) Coordinates of the ith body at time t (31)
q(t) Position, velocity, mass vector of all bodies (system state at time t). §4.3
qn q(nh) at nth time step. §4.11

r0,r Initial/final separation between bodies i and j for Kepler solver. §3.2
s Independent variable in universal Kepler step. §3.2
∆t Fraction of a timestep to transit time. §4.11
t0 Initial time of integration (days). §2

ti jk The kth time of transit of body i in front of body j. §4.11
tmax Duration of simulation (days). §2
Ti j Correction tensor. (79)
∆vi Pairwise velocity kick or correction of ith body (instead of Kepler step). (75), (79)
v0, v Initial/final relative speed in Kepler problem. §3.2

vsky,i jk The sky velocity at the kth time of transit of body i in front of body j. §4.11
vi = ( Ûxi, Ûyi, Ûzi) Cartesian velocities of ith body §4.3

wi Intermediate quantity for kick derivative. 76
xi = (xi, yi, zi) Cartesian coordinates of ith body §4.3

xi j,vi j Relative position and velocity of bodies i and j (x,v in §3.2). 4
x0,v0 Relative position and velocity of bodies i and j at start of universal Kepler step §3.2
α0, η0 Quantities used in Kepler solver. §3.2
β Dimensionless energy for Kepler step. (13)
γ Variable used in defining Gi functions. Table 1
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