
15. Eco-evo: Why should fitness be constant? 
Until now, we have made a very simple, but also very over-simplifying assumption: We have 
assumed that the fitness 𝑟𝑖 of a type 𝑖 is a constant number independent of the frequencies 𝑥𝑖  of 
the various types. Yet we know many situations where this is not true. For example, the fitness of a 
rabbit depends very much on the frequency of the predators in its area, and also on the frequency 
of other rabbits that might be easier for the predators to catch! 

The important point here is that simplistic slogans such as “Survival of the Fittest!” often rely on the 
unjustified assumption that “fitness” is a constant, measurable number determined only by the 
genomic makeup of a type. But fitness simply is the specific growth rate of a type, and the only way 
we can measure it is by observing that type’s growth in a specific context. 

Genetics may play a role in determining fitness, but we can only ever measure fitness by observing 
a species within a real ecological context, which will rarely lead to a constant value! 

And of course, ecology depends on details of how this type interacts with this context, so fitness 
cannot be constant, linear or even particularly simple! In practice, fitness depends highly nonlinearly 
on the games an organism plays with its environment … 

Frequency-dependent selection 
First, let’s formulate a definition of general, nonlinear selection. Recall that the definition of linear 
selection looked like this: 

𝑥̇𝑖 = 𝑥𝑖(𝑟𝑖 − 𝑅); 𝑅 = ∑ 𝑥𝑖𝑟𝑖
𝑛
𝑖=1    (Linear selection) 

The only change we now need to make is to allow the fitness values 𝑟𝑖 to depend explicitly upon the 
frequencies 𝑥𝑖: 

𝑥̇𝑖 = 𝑥𝑖(𝑟𝑖(𝒙) − 𝑅); 𝑅 = ∑ 𝑥𝑖𝑟𝑖(𝒙)𝑛
𝑖=1  (Frequency-dependent selection) 

If we set 𝑛 = 2 in these equations, we obtain the simple 2-type situation. In this case, we 
immediately see that the dynamics of frequency-dependent selection is far more interesting and 
fun than boring old constant selection: 

𝑥̇1 = 𝑥1(𝑟1(𝒙) − 𝑅); 𝑥̇2 = 𝑥2(𝑟2(𝒙) − 𝑅); 𝑅 = 𝑥1𝑟1(𝒙) + 𝑥2𝑟2(𝒙); 𝑥1 + 𝑥2 = 1 

? Using the last equation to replace 𝑥2 by 1 − 𝑥1, show that our frequency-dependent 

selection equations become: 𝑥̇1 = 𝑥1(1 − 𝑥1)(𝑟1(𝒙) − 𝑟2(𝒙)). 

Again replacing 𝑥2 by 1 − 𝑥1, we can replace the rates 𝑟1, 𝑟2 by functions of 𝑥1: 

𝑥̇1 = 𝑥1(1 − 𝑥1)(𝑟1(𝑥1) − 𝑟2(𝑥1)) 

? This equation defines dynamics on the interval [0,1]. Sketch this interval as a horizontal axis 
and draw arrows on it to represent dynamics that flow from all points of the interval to a 
single stable fixed point within the interval. Now find two functions 𝑟1(𝑥1), 𝑟2(𝑥1) with the 
property that they together generate these dynamics. 

2-player games 
OK, so we can see that frequency-dependent selection might generate fun dynamics, but can we 
find some realistic situation that produces frequency-dependent selection? In the 1970’s, John 
Maynard Smith invented evolutionary game theory. His idea was that the difference between the 
types in a population might be behavioural: maybe type 1 uses a very different strategy from type 
2 for its ecological interactions (with environment and other individuals), and this strategy might be 
important for its evolutionary survival! 



Example: HD (Hawks and Doves): In the HD game, two dogs meet in a forest at a place where a 
tasty sandwich is lying on the ground, whose nutritional benefit is 𝑏 = 4. Each dog has a choice 
between two strategies: H (hawk: attack) and D (dove: be nice). If the first dog adopts strategy 
H, and the second adopts D, the first dog will gain the sandwich benefit 𝑏, and the second dog 
gets nothing. On the other hand, if both dogs adopt strategy H, they will probably both pay 
the cost 𝑐 = 2 of getting injured; on average, each dog will get the sandwich half of the time 
and so gain benefit 𝑏 2⁄ . If both play strategy D, each will again get the sandwich half the time 
(benefit 𝑏 2⁄ ), and will pay no injury cost. 

We represent the HD game as a payoff matrix 𝑨, and its strategies as two basis vectors 𝒉, 𝒅: 
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The payoff matrix tells us how each individual will benefit on average from using some strategy to 
interact with other individuals in the HD game. For example, we can represent the four possible HD 
interactions between individuals like this: 

… receives payoff from: Hawk Dove 
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A hawk meeting a dove will always do well, getting a payoff of 4, whereas the dove gets nothing. On 
the other hand, the hawk strategy is much less useful in a population containing only hawks, since 
the hawk then only receives an average payoff of 1. In fact, it may well be that hawks die out from 
injuries, whereas a population of doves can survive. 

? Suppose we have a population that contains 75% hawks and 25% doves. The frequency 
vector is then 𝒙 = (0.75,0.25)𝑇, and the typical payoff for a hawk or dove is given by the 
product 𝑨𝐻𝐷𝒙. What is this typical payoff for a hawk? For a dove? 

? Now calculate the typical payoff for a hawk and for a dove in a population with the frequency 
vector 𝒙 = (0.25,0.75)𝑇. Does this make sense compared to your previous calculation for a 
hawk-dominated population? 

You can see that the typical payoff for a hawk or a dove is highly frequency-dependent – the ‘fitness’ 
of a dove is much higher in a dove population than in a hawk-dominated population! 

The replicator equation 
You have just seen that for an individual using strategy 𝑖 to play the game with payoff 𝑨 = (𝑎𝑖𝑗) in 

a population with type frequencies 𝒙 = (𝑥𝑗), the typical payoff is ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 . But this is just the net 

benefit that this individual has in its daily life from interacting with other. Average payoff is the 
source of this individual’s replicative success 𝑟𝑖, so we can insert this success, or fitness, into the 
frequency-dependent selection equation: 

𝑥̇𝑖 = 𝑥𝑖(∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 − 𝑅); 𝑅 = ∑ 𝑥𝑖𝑎𝑖𝑗𝑥𝑗

𝑛
𝑖,𝑗=1

or: 𝒙̇ = 𝒙 (𝑨 ∙ 𝒙 − 𝑅) 𝑅 = 𝒙𝑻 ∙ 𝑨 ∙ 𝒙
} (Replicator equation) 

Josef Hofbauer and Karl Sigmund used the replicator equation in the 1990’s to describe the 
dynamics of infinite populations of 𝑛 strategy-types playing a 2-player game. 

? Set up a general payoff matrix 𝑨𝐶  and the replicator equation for the game of Chicken, in 
which two teenagers drive their cars straight towards each other at high speed on a narrow 
road. Each teenager chooses one of two possible strategies: C (chicken out and leave the 
road) or D (drive straight ahead). The loser is the one who chickens out first – in this case the 



other driver gets the prestige benefit 𝑏. If neither chickens out, both are injured with a cost 
𝑐; and if both chicken out, they share the benefit. 

𝑛-strategy games 
The examples we’ve looked at so far have two possible strategies, but in general there may be 𝑛 
different strategies for playing a game. In this case, the payoff matrix contains (𝑛 × 𝑛) entries for 
playing each strategy against each of the others. A simple example is rock-scissors-paper (RSP), in 
which three strategies cyclically dominate each other – that is, rock beats scissors, scissors beat 
paper and paper beats rock. This situation does indeed occur naturally in some species of lizard. Its 
payoff matrix might look like the left-hand one below, which we can simplify to an equivalent form 
by adding an arbitrary constant to each column (this is always allowed for payoff matrices in the 
replicator equation): 

𝑨𝑙𝑖𝑧𝑎𝑟𝑑 =

𝑅 𝑆 𝑃
𝑅
𝑆
𝑃

(
4 2 1
3 1 3
5 0 2

)
⟶ 𝑨𝑅𝑆𝑃 = (

0 1 −1
−1 0 1
1 −1 0

) 

? Set up the replicator equation for the game 𝑨𝑅𝑆𝑃. 

Predator-prey dynamics 
The bridge between evolution and ecology is illustrated by the fact that the replicator equation is 
equivalent to the Lotka-Volterra equations. To see that this is true, consider Vito Volterra’s 2-species 
predator-prey equations for prey species 𝑦1 and predator species 𝑦2: 

𝑦̇1 = 𝑦1 (𝑎 − 𝑏 𝑦2)

𝑦̇2 = 𝑦2 (−𝑐 + 𝑑 𝑦1)
}   (Predator-prey equation) 

These equations describe a combined population that can grow arbitrarily large – it is not 
normalised to a total size of 1. For this reason, we first define a new variable describing the total 
population 𝑦3 ≡ 𝑦1 + 𝑦2, then define: 

𝒙 ≡
1

1 + 𝑦3
∙ (

𝑦1

𝑦2

1
) 

? Verify that the sum of these populations ∑ 𝑥𝑖
3
𝑖=1  is equal to 1. 

? Show that substituting the payoff matrix 𝑨 = (
0 −𝑏 𝑎
𝑑 0 −𝑐
0 0 0

) in the replicator equation 𝒙̇ =

𝒙 (𝑨 ∙ 𝒙 − 𝒙𝑻 ∙ 𝑨 ∙ 𝒙) recovers the predator-prey equations. 

The general form of the predator-prey equations for 𝑛 species was discovered by Alfred Lotka in 
relation to the kinetics of interacting chemical species: 

𝒚̇ = 𝒚 (𝒓 − 𝑩 ∙ 𝒚), or: 𝑦̇𝑖 = 𝑦𝑖  (𝑟𝑖 − ∑ 𝑏𝑖𝑗𝑦𝑗
𝑛
𝑗=1 ) (Lotka-Volterra equations) 

Exercises 
1. Build an RSP-simulation on 𝑆3to display the possible fates of three lizard types, and use your 

model to demonstrate that both of the payoff matrices 𝑨𝑙𝑖𝑧𝑎𝑟𝑑 and 𝑨𝑙𝑖𝑧𝑎𝑟𝑑 generate 
identical, cyclical dynamics. 

Summary 
 The replicator equation 𝒙̇ = 𝒙 (𝑨𝒙 − 𝑅), where 𝑅 = 𝒙𝑻 ∙ 𝑨 ∙ 𝒙 and 𝑨 is a payoff matrix, is 

equivalent to the Lotka-Volterra equations 𝒚̇ = 𝒚 (𝒓 − 𝑩 ∙ 𝒚). 


