J. theor. Biol. (2000) 206, 211-220

doi:10.1006/jtbi.2000.2118, available online at http://www.idealibrary.com on ||][§|,®

Integral Rein Control in Physiology II: a General Model
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We generalize the principle of integral rein control to include other systems which partition in
such a way that the equilibrium values of some variables are not dependent on the equations
governing those variables. Instead, they are determined by the dynamics of other, “regulator”
variables. We improve our earlier model for the control of glucose by insulin and glucagon by
relaxing the condition necessary for it to operate. The two hormones do not have to be
inhibited in the same way; they need only respond to the same combination of their concentra-
tions. We also present a model for the control of ionized calcium by PTH and calcitonin and
suggest that the role of chromogranin A may be to stabilize an otherwise unstable system.

Introduction

In previous papers (Koeslag et al., 1997; Saunders
et al., 1999; henceforth (I) and (II), respectively),
we introduced a principle which we called inte-
gral rein control (IRC). This combines the zero
steady-state error of integral control with the
stability against substantial perturbations in
either direction which is characteristic of rein
control (Clynes, 1969). An important feature is
that the set point is fixed dynamically rather than
by an external reference.

We used this principle to derive a model for the
control of blood glucose by insulin and glucagon.
Our model explains how glucose can be so
closely and reliably regulated. It also accounts for
some of the important differences between the
two types of diabetes, and in particular why
glycaemic control is much easier in Type II dia-
betes than in Type I diabetes.
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The most restrictive property of the original
model was that it assumed a strong symmetry
between the hormones: the two had to be inhib-
ited by themselves and each other in the same
way. In this paper, we present a more general
IRC model which allows us to weaken this as-
sumption. It requires only that the hormones
respond to the same function of the hormone
concentrations; it allows the responses themsel-
ves to be quite different.

The new model also includes the case in which
there are more substances involved in regulation
and/or more than one substance being regulated.
We use it to model the control of calcium ion
concentration, based on the hypothesis (Koeslag
et al., 1998) that in addition to PTH and cal-
citonin, a chromogranin-derived peptide is in-
volved. Our results suggest that when there is
little or no removal of a regulated substance by
dilution or demand, a system with four compo-
nents is more likely to be stable than is a system
with only three.

© 2000 Academic Press
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The Model

Consider a system which may be very large
and complex, but can be described by a set of
n state variables xq, ...,x, where n is finite. We
suppose that there is also a set uq, ...,u,, of ex-
ternal variables, which influence the system but
are not influenced by it. In our earlier model of
glucose control, for example, there are three state
variables, the concentrations of glucose, glucagon
and insulin, and two external variables, the rate
of input of glucose from the gut and from the
liver, and the demand for glucose from the brain,
muscles and other tissues. We also suppose that
the system can be described by a set of n first-
order ordinary differential equations

dx;

d_tl :ﬁ(xla .

c X U, s i=1,....,n. (1)

S Uy ),

Now, in general, we would not expect that each
of these n equations will involve all n state vari-
ables. In particular, it may be that there are
k state variables, which we may take to be
X1, X2, .., Xg, such that the equations

filxy, oo xpu) =0, i=1,2,...,k, (2)
involve only k functions of the state variables; we
denote these by y;(xy, ...,X,). (Here u is an ab-
breviation for u4, ..., u,.) Then we can obtain the
steady-state values of the k functions y; from the
k equations (2) alone; we do not require the full
system (1).

(Note that this does not mean that the right-
hand sides (r.h.s.) of the first k differential equa-
tions must involve only the k functions y;. In fact,
while we shall suppose this to be the case in the
examples in the rest of this paper, the argument
requires only the somewhat weaker condition
that the first k functions f;(x, u) must factor

fi(xq, ...

JXp W) = gi (Vs L Ve W) Bi(Xy, ., X,50),

i=1,2,...k (2a)

and that at equilibrium it is the g; that vanish, not
the h;.)

Suppose that we are modelling a large, com-
plex system that can be described by a system of

n ordinary differential equations, where n may be
a large number. It may well be that we cannot
write down all the equations, and we may not
even know how large n is. Yet providing there is
a set of k equations that satisfy the condition
described above, we can obtain the steady-state
values of a set of k variables y;.

In particular, if no external variables are in-
volved in eqns (2), then the steady state is inde-
pendent of the values of the external variables;
this is a generalization of the case of integral rein
control described in (II). Consistent with this, we
shall refer to the x; (i = 1, ..., k) as the regulator
variables and the y; (i = 1, ..., k) as the regulated
variables.

Of course, it may be that the system simply
divides completely into two parts, with the first
k variables independent of the rest. This is, how-
ever, the trivial case; in general, the regulated
variables y; will not be merely functions of the k
regulator variables x;. It may well be that one of
the regulated variables is simply one of the re-
maining variables x; (i.e. with i > k), and in that
case we can determine the steady-state value of
a variable for which we may not even know the
form of corresponding differential equation. This
means that we may not have to know the differ-
ential equation that describes the behaviour of
the variable of the most interest to us in order to
find its steady-state value.

This may sound surprising, but it is only a gen-
eralization of what happens in a simple control
system. The transient behaviour of the variable
being controlled may be influenced by many dif-
ferent factors, but the steady-state value is deter-
mined by the setting of the controller.

Integral Rein Control: the Case k=2

For this paper, we concentrate on the case
k = 2, in which there are two regulator variables
and, accordingly, two regulated variables. This is
integral rein control as described in our previous
papers, although here we provide a more general
model. The case k = 1 is ordinary integral con-
trol, and k > 3 is more complicated than we
expect to observe in a single physiological
regulatory system, though it may be relevant in
ecology and other contexts. We use much the
same parameter values as in (II), partly for ease of
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comparison, and partly because we have already
verified that these are of the right orders of
magnitude.

GLUCOSE REGULATION

In (IT) we proposed the following equations as
a model for the control of blood glucose by
glucagon and insulin:

d
.szwmwwmm—Dmx (3)
d
8 — BU(G)ha(4, B) — Do), C)
‘L—f=1+a(/1, G) - B(B,G) = (R, G).  (5)

Here A, B, G are the concentrations of
glucagon, insulin and glucose, respectively, I is
the rate of input of glucose to the system and
R stands for the demand, and D4 and D3, are
constants. The functions «(4, G), f(B, G) and
7(R, G) are increasing functions of both their ar-
guments, and & (A4, B) and h,(A, B) are decreas-
ing functions of both their arguments. Finally,
¢(G) is a decreasing function of G and ¥ (G) is an
increasing function of G.

The main result of (II) was that if h (4, B) =
h, (A, B) then there is a steady state in which G,
the equilibrium value of G, is independent of
I and R. If, without loss, we set D4, = D = D,
then G is the value of G at which the curves of
¢(G) and Y (G) intersect.

For the particular case of glucose control,
it is reasonable to assume that the condition
hi(A, B) = h,(A4, B) holds, on account of the
direct link between the o-cells that produce
glucagon and the ff-cells that produce insulin [see
(I)]. The model is also structurally stable; if the
inhibition functions are approximately equal,
then G is approximately constant, which is suffi-
cient. It is, however, harder to justify this
condition in other cases, where the hormones are
produced in quite different parts of the body.

We can now weaken the condition consider-
ably by taking advantage of the result of the
previous section. We do not have to require that
the two inhibition functions have to be the same.

They need only depend on the same combination
of the hormone concentrations:

hi(4, B) = h,(f(4, B)),
h>(4, B) = hy(f (A, B)) (6)

We can now set the time derivatives equal to zero
in eqns (3) and (4) and solve the resulting alge-
braic equations to obtain the steady-state values
of the regulated variables G and f(4, B); in the
notation of the previous section these are the
variables y; and y,. Finally, we can use eqn (5)
to obtain the steady-state values 4 and B
separately.

Thus, the - and fS-cells do not have to be
inhibited in the same or even similar ways. We
may say that they have to read the concentra-
tions in the same ways, but how they respond
may be quite different. This includes the possi-
bility (cf. I) that it is only the f-cells that respond
directly to conditions and that the a-cells pro-
duce glucagon or not in accordance with signals
from the f-cells.

As an example, we have carried out calcu-
lations based on the following model:

dA

- ~A@OK-A=B)-D), (]
@_B< P D> 8
o BT are ) ®
46 a4 pB_RG 9

Here the two regulator variables are 4 and B and
the two regulated variables are G and A + B.
To facilitate comparison with our results in
(IT), we used the same values K = 6,0 = § = 2.93,
D =0.1 and set u =495 to make the initial
values the same as in the earlier example. The
results for the case of varying demand I are
illustrated in Fig. 1; the agreement in the case of
varying input R is even closer. We have com-
puted the eigenvalues of the stability matrix as
either R or I varies, and these too are very much
the same as those obtained in (II). The only
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FIG. 1. Variation of blood glucose G as the input [ is
increased to 20 times its nominal value ( ) and then back
(----- ) using the relation I = 1 + 0.01¢, which corresponds
to doubling in about half an hour. The curves in (a) were
computed using the same inhibition function h(A4, B) [as in
(IT)], whereas those in (b) were computed using different
inhibition functions [eqns (7) and (8)].

significant difference is that for relatively large
I the magnitude of the least negative eigenvalue is
somewhat less, which is why there is a small
oscillation in the return trajectory in Fig. 1(b).

Ca?* REGULATION

The concentration of calcium ions in the blood
is closely regulated, at about 1.2 mmoll~ . This
is chiefly accomplished by two hormones, the
parathyroid hormone (PTH), which is secreted
from the parathyroid gland and acts to increase
the concentration of Ca2?", and calcitonin,
which is secreted from the C cells of thyroid
gland and which acts to decrease the concentra-
tion of Ca?". The rate of secretion of PTH
decreases and that of calcitonin increases, both
almost linearly, with increasing plasma ionized
calcium levels.

The situation is somewhat similar to that of
glucose control, but there are two significant dif-
ferences. First, whereas the o- and f-cells are
located together in the islets of Langerhans [and
indeed we have suggested (Koeslag et al., 1997)
that syncytial groups can switch between the two
roles], the parathyroid glands are anatomically
remote from the thyroid gland. Second, a chromo-
granin-derived peptide (possibly CgA ,,: we
shall refer to it simply as CgA) is co-stored and
co-secreted with both PTH and calcitonin and
inhibits the secretion of both (Cohn et al., 1984,
1995; Deftos et al., 1990; Fasciotto et al., 1990;
Drees et al., 1991, 1994; Zhang et al., 1994).

We have therefore proposed (Koeslag et al.,
1999) that what matters in calcium ion regulation
is not the mutual and self-inhibition of the two
hormones but rather the separate inhibition of
each of them by CgA. Like our model for glucose
regulation, this is a system with k = 2, but in this
case the regulated variables are distinct from the
regulator variables.

We illustrate our hypothesis with the following
model:

dA

T A(¢(C)hy(H) — D), (10)
t

dB

T By (C)h,(H) — D), (11)
t

dc

o I + a(A, C) — B(B, C) — D.C, (12)

dH

o 1(A¢(C)hy (H), By (C) h,(H)) — DH.

(13)

Here A, B, C and H are the concentrations of
PTH, calcitonin, Ca®" and CgA, respectively.
The function ¢(C) is an increasing function of C,
whereas /(C) is a decreasing function of C. The
functions (4, C) and (B, C) are increasing func-
tions of both arguments, and h, (H) and h, (H) are
decreasing functions of H. The input of Ca?*
from the gut is denoted by I, and D and D,
are constants. We would expect D, to be much
smaller than D, as there is relatively little loss of
ionized calcium from the blood other than that
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mediated by the hormones. Equation (13) simply
states that the rate of secretion of CgA is a func-
tion of the rates of secretion of the two hormones;
in modelling we shall take it to be a (possibly
weighted) sum of the rates. For simplicity, we
have assumed that the rate of secretion of CgA
is not affected by any variables external to the
system represented by eqns (10)-(13), but the
situation is not materially altered if it is.

Equations (10) and (11) include no mutual or
self-inhibition by the two hormones. This does
not mean that we are assuming that no such
inhibition ever occurs, only that within the range
in which the regulation operates, the inhibitory
effect of CgA is much greater than that of the
hormones themselves.

Note that on this model, the concentration of
CgA remains constant. This is not strictly essen-
tial to the hypothesis, because if PTH and cal-
citonin are inhibited by two substances, CgA and
something else, then only some function of the
two latter concentrations would have to be con-
stant. Nevertheless, it does suggest the apparently
paradoxical idea that if the CgA concentration is
found to be constant, this actually supports the
hypothesis that CgA is involved in the regulation
of ionized calcium. Intuitively, we would expect
substances involved in regulation to vary, as of
course the hormone concentrations do.

To illustrate the model we have taken

but this is only for simplicity; the principle
does not require that the functions be the same.
As in (IT) we used simple functions for ¢(C) and

Y(C):

1, C<02,
d(C)={1—(C—02?2/4, 02<C<22,
0, C>22,
(14)
0, C <02,
d(C)={1—(C—22724, 02<C<22,
1, C>22.
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FIG. 2. Variation of ionized calcium C as the input I is
increased to 18 times its nominal value (——) and then back

We took «(A, C) = a4 and (B, C) = B and we
used the following values for the parameters:

o=p=087 D=0.1, Dc=0.01,

K=6 u=1.

The results are illustrated in Fig. 2, and are
clearly much the same as for either glucose
model.

An important property of a three-component
IRC system is that if one of the regulator vari-
ables is absent, there is no longer a set point.
There is in general still an equilibrium value for
the regulated variable, but it is no longer inde-
pendent of the external variables and it is typi-
cally quite different from the set point that exists
under normal conditions. This can readily be
seen by considering eqns (7)—(9). If, for example,
we set B = 0, the steady-state equations become

$(G)K—A) =D, I+aA—RG=0 (15

and G, the steady-state value of G, now clearly
depends on both I and R. What is more, for the
“nominal” values of I and R (i.e. the input and
demand levels for an individual who is resting
and has not recently eaten) G will be considerably
higher than the set point [see (IT)]. This happens
because under normal conditions, G is main-
tained at the set point by a balance between the
action of A and that of B even when I and R have
their nominal values. (If B is not present, 4 will
push G to a higher level.) As we have previously
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pointed out, this can explain why Type I diabetes
is so difficult to manage.

A similar effect can be observed in a four-
component IRC system. If, for example, in eqns
(10)-(13) we set B = 0, then the three remaining
steady-state equations no longer have C = const.
as a solution. There is, however, an important
extra feature. At steady state, and with B =0,
eqn (10) becomes

¢(C)hy(H) =D =0. (16)
We note that C depends only on H, not on A.
Consequently, if the CgA concentration could
somehow be clamped at the normal value, PTH
would regulate the calcium ion to its normal
concentration as well.

If one of the regulators in a three-component
IRC system fails, the regulated variable must
be controlled by direct intervention. This may be
difficult to do with sufficient precision, as is the
case in diabetes. A four-component system offers
an additional possibility, however. Using our
model of calcium ion concentration as an
example, it implies we need clamp only either the
CgA or the calcium ion concentrations to keep
both at their proper levels. If there are physiolo-
gical reasons why both should be more or less
constant, that clearly makes treatment easier,
since a single intervention will do for both. Sup-
pose, however, that the precise concentration of
CgA turns out not to be especially important.
What the model then suggests is that clamping
CgA might still be an appropriate intervention
because it would be an indirect but effective way
of keeping the calcium ion concentration at its
proper level (see Koeslag et al., 1999).

The indications that this might work in prac-
tice would be first that the CgA concentration is
normally approximately constant and, second,
that it changes when the calcium ion concentra-
tion changes, and similarly, of course, for other
pairs of variables.

The control of blood calcium ion concentra-
tion is mediated by the calcium-sensing receptor
(CASR). This is found both in the parathyroid,
where it affects the release of PTH and also along
the kidney tubule, where it affects the rate of
excretion of calcium by the kidney. Mutations
can cause the CASR to be less active, which can

raise the set point for Ca*", i.e. produce hyper-
calcaemia, or to become more active, which
lowers the set point and so causes hypocalcaemia
(Brown & Herbert, 1997, Pearce & Thakker,
1997; see also Cole et al., 1999.)

We can incorporate this into the model, repres-
enting changes in the activity of CASR by
changes in the function ¢(C) in eqn (10). We now
verify that the set point in the model moves in the
right direction; this is obvious for a system with
three components but has to be checked when
there are four.

Suppose that the activity is reduced. Then for
any given value of C, the rate of secretion of PTH
will be greater than normal, and we can represent
this by replacing eqn (10) by

d4

= A@©)hy (H) — D)

(10a)

where ¢ (C) > ¢(C) for all C, or at any rate for all
C within the range that concerns us.

Let the equilibrium concentrations of Ca?*
and CgA be (C, H) in the case of normal CASR
activity and (C’, H') in the case of reduced CASR
activity. Then from eqns (10), (10a) and (11), we
have

¢(C)hy (A) =D, (17)
W (C)ho(A) =D, (18)
¢(C')hy (A') =D, (19)
W (C')hy(H') = D. (20

To show that €' > C we suppose the opposite,
that C > C'. If that is so, then (C) > ('), and
then from eqns (18) and (20) it follows that
h,(H) < h,(H'). Because h, is a decreasing func-
tion of H this implies that H > H’ and this in turn
implies that hy (H) < hy (H'). It now follows from
eqns (17) and (19) that ¢(C) > d?(é’) and since
&( ~) > ¢(C’) by the definition of ¢, we have that
¢(C)> ¢(C) and so C < . This contradicts
our original assumption, and so we conclude that
C' > C, ie. that reduced CASR activity in the
parathyroid should lead to hypercalcaemia.
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A similar calculation shows that increased
CASR activity in the parathyroid should lead to
hypoglycaemia. We can also show that in both
cases the set point for CgA will move in the same
direction as that for Ca™.

We have not included the effect of CASR on
the action of the kidneys because in the model
this would appear as a term in eqn (12), and this is
not involved in determining the equilibrium
value of the Ca?™ concentration, C. This is con-
sistent with a general principle of integral rein
control that the set point depends only on what
happens in the controllers.

Stability

When a system is under integral rein control,
the equilibrium values of the regulated variables
do not depend on the external variables. If, there-
fore, the external variables are changed slowly,
the regulated variables will not change at all so
long as both of the regulator variables are pres-
ent. In the case of calcium ions, for example, the
steady-state analysis predicts that as the input is
increased, the concentration of PTH should fall
and that of calcitonin should increase, but the
calcium ion concentration should remain con-
stant until the PTH has fallen to zero. Only then
should the calcium ion concentration start to
rise.

In practice, of course, external variables such
as the input do not change arbitrarily slowly. We
have therefore solved the differential equations
(10)-(13) numerically. We find (Fig. 2) that the
calcium ion concentration begins to rise almost
at once, though not by much, but that the
rise becomes steeper at an input of about I = 4.
In this model, and with the given parameter
values, the PTH concentration falls to zero at
I=5.11.

We expect both phenomena should be ob-
served in real systems. In particular, the relatively
sharp rise before the PTH concentration has
fallen to zero occurs because I = 5.11 is a bifurca-
tion point for the system. The equilibrium with
C = const. becomes unstable there, and this
means that the system will become less stable as
I approaches this value. In the case of step
changes in I, this will be observed as larger over-
and undershoots; in the case of smooth changes,

the calcium ion concentration will be signifi-
cantly above the equilibrium level when I is in-
creasing and below it when I is decreasing.

This feature does not depend on the details of
the model: in general, integral rein control can
operate only within a certain range of the vari-
ables, and as we approach the boundary of this
range, the system will take longer to recover from
perturbations. By the same token, it will also
show some transient response to all but the very
slowest changes in the external variables.

That the system does not exhibit a precise
return to C = 1.2 when the input is reduced
(Fig. 2; broken line) is also a transient phenom-
enon. If I is maintained at any value between its
nominal value and the bifurcation point (in the
model these are 0.3 and 5.11, respectively), the
variables 4, B,C and H will all return to their
equilibrium values, which in the case of C is 1.2
for all values of I in that range.

In (IT) we analysed the stability of the glucose
model with identical inhibition functions h;(A4, B).
We found that when I and R had their nominal
values, the eigenvalues of the stability matrix
were

}vl = — 3A/2,

Jas =3[R+ /R*—164D(x + p)/15]. (21)

With the given values of the parameters the
numerical values are —4.40, — 0.10 4+ 0.67i.
The form of the expression for 1,, A3 indicates
that as R decreases, the system will become less
stable. If, for example, we leave all the other
parameters the same and set R = 0, the eigen-
values are —4.40, —0.0002 + 0.68i. (The real
parts of the last two are not quite zero because
keeping the other parameters unaltered means
that A and B are not equal when I and R have
their nominal values and so eqn (15) does not
apply.)

If we repeat the calculations using h, =
w/(1 + (A + B)?) and the parameters given above,
then we cannot derive a simple analytical expres-
sion for the eigenvalues, but we can readily
determine them numerically: they are (— 2.30,
—0.10 £ 0.67)) for R=02 and (—2.18,
0.005 + 0.693i) for R = 0, so the general behav-
iour is very much the same.
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Thus, the robustness of the regulation is
strongly dependent on R, which represents the
rate at which glucose is removed from the blood
to supply energy to the muscles, i.e. other than by
the action of the two hormones. Intuitively, this
seems right; we would expect that other things
being equal, a system with a large flux should be
more stable.

The coefficient of C in eqn (12) is taken to be
very small because comparatively little calcium is
removed from the blood stream in an analogous
way. Nevertheless, the eigenvalues of the stability
matrix for the system (10)-(13) are, with the
above values of the parameters, (—0.1, —0.1 +
0.71i, —4.40), so the resilience, as measured by
the least negative real part, is precisely the same
as in the three component model with R = 0.2.
This remains the case even if we take D, = 0.
Dilution, or its equivalent, generally has
a stabilising effect (as can be seen from the fact
that it implies a negative entry on the main diag-
onal of the stability matrix), and it appears that
where this effect is weak, a four-component sys-
tem is more likely to be stable.

Hierarchical Systems

Systems theorists have recognized for a long
time that large complex systems are often organ-
ized hierarchically (see, e.g. Simon, 1962), by
which they mean that the system is partitioned
into subsystems in such a way that components
within a subsystem interact directly only with
other components within the same subsystem.
Interaction between elements of different subsys-
tems occurs only indirectly through interactions
at the level of subsystems. This is what we
observe here. The regulator variables, the hor-
mones, interact with the rest of the system (not
included in the model) only indirectly, through
their effect on the regulated variables, i.e. glucose
or calcium ions.

We also expect that a similar phenomenon
should be observed in other complex systems,
though possibly with many more variables in-
volved and without the precise regulation we
observe in some physiological systems. For
example, in an ecosystem the regulated variables
could include some common resource, and the
regulators could be the populations of species

that depend on the resource and also compete for
space, like the daisies in the Daisyworld model
(Watson & Lovelock, 1983). The weighted sum of
the populations would almost certainly be one of
the transformed variables, as it is in Daisyworld
(Saunders, 1994). In such a case, we would not
expect the level of the resource actually to remain
constant, because all species would be acted upon
by external variables. On the other hand, if the
system partitioned in the way we are suggesting,
the effect would be that even if the resource was
directly affected by the environmental variables,
its level would depend on the way that those
variables acted on the other species, not on the
resource itself.

Where this sort of partitioning occurs, it can
allow us to gain information about variables,
perhaps the ones we are most interested in, for
which we are unable to write down the relevant
equations. This is especially likely to be the case
with important variables which interact directly
with many others. For example, we know that the
release of glucose into the blood can be stimu-
lated in a number of ways, and that eqn (5)
is therefore an oversimplification. Fortunately,
we do not rely on this equation either for the
inference that the glucose concentration will
remain constant over a wide range of parameter
values or for determining what this constant
level will be.

One of the problems encountered in the
study of complexity is that systems of coupled
differential equations must be solved as a whole;
the variables of interest to us can only be separ-
ated out afterwards. Like the splitting lemma
of catastrophe theory, the partitioning de-
scribed in this paper can make it possible to
get round this difficulty. There is no shortcut
available if we want a full solution, but we may be
able to gain useful information with much less
effort.

Conclusions

There are two distinct forms of integral rein
control. In one, the system has only three compo-
nents and the two regulators must “read” the
concentrations of the regulated variables in the
same way, though they may respond quite differ-
ently. In the other, there is a second regulated
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variable and then the regulators must not signifi-
cantly inhibit themselves or each other near the
steady state. When the variable to be regulated is
not subject to dilution or removed from the sys-
tem in some other way roughly proportional to
its own concentration, a system with four compo-
nents is more likely to be stable than one with
only three.

We expect that integral rein control should
be common in physiological systems, especially
since integral control in general arises naturally
where regulation involves chemical rate equations.
Because the concentrations of the regulators are
themselves specified by first-order differential
equations, they automatically appear in the equa-
tions for the regulated variables as integrals.

The most obvious sign of integral rein control
is that a system can maintain a quantity at a
nearly constant level despite significant and sus-
tained changes in other variables that affect it.
The key point is not that the system is stable
against short-term perturbations (though it is)
but that it exhibits zero steady-state error: the
equilibrium value of the regulated quantity re-
mains the same even when the value of some
important external variable (such as the rate of
input of the quantity into the system) is altered to
and remains at a value substantially above or
below the expected one.

A second important characteristic is that the
set point is fixed dynamically, not by comparison
with some external reference. This is likely to
make the fixed point constant over the lifetime of
an individual organism and also the same for
different organisms. It also means that damage to
the control system will typically not just make the
set point harder to maintain, it can destroy it
altogether, as in Type I diabetes. This does not
happen in Type II diabetes because the problem
is not in the control system itself but in the
response to the control. As we pointed out in (I)
and (II), this is why Type I diabetes is so much
more difficult to manage. It is not a question of
bringing the system back to a set point; the prob-
lem is to maintain the glucose concentration at
a level which, while it is still optimal for the
patient, is no longer a natural equilibrium point
of the system.

As we have seen, there are two distinct kinds of
IRC systems, those with three components and

those with four. Four-component systems have
two separate variables that are held constant. It
follows that a indication that a four-component
IRC is in operation is that some variable is being
held constant when there seems no obvious rea-
son why it should be. Thus, for example, if our
model of calcium ion control is correct, we would
expect that the concentration of certain CgA
species (those that are cosecreted into the blood
with the two counterregulatory hormones)
should be constant.

We would also expect that the concentration of
those CgA species should alter if a failure of
regulation causes the calcium ion concentration.
In such cases, clamping the CgA concentration
could be an alternative method of maintaining
the calcium ion concentration at its optimum
level.

More generally, our results suggest that it
would be useful to identify substances whose
concentration is approximately constant under
normal conditions, whether this appears to be
physiologically important or not. If any of them
is observed to change when some regulatory sys-
tem is impaired, then that substance may be
the second variable of an IRC pair, and knowing
this might allow a wider range of possible
interventions.
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