
16. Altruism: How can evolution promote group cooperation? 
An important question for evolutionary theorists is: If I can only pass on my own genes, why should 
I ever do anything nice for you? Why might an organism A perform an action that increases the 
replicative fitness of some other organism B, even though A’s action does not increase A’s own 
replicative fitness? 

In the 1960’s-1970’s, the idea of kin-selection arose to explain this: I help my brother because we 
share about a quarter of our genes, so by helping him, I promote the replication of a quarter of my 
own genes. By this accounting, I am twice as willing to save myself as to save my child; I am twice as 
willing to save my child as to save my sibling; and I am twice as willing to save my sibling as to save 
my half-sibling. 

The important idea behind kin-selection is that selection does not reward individuals, but the 
replication of structures: replicating my genes is what contributes to population growth – not my 
own personal survival. 

But if my fitness depends on your presence, it is in my own interest that I do what I can to ensure 
your presence. For example, kin-selection does not explain why African crows adopt and look after 
the babies of other crows, with whom they are not related. This example makes clear that selection 
rewards the replication of developmental systems. Susan Oyama used the term developmental 
system (DS) in 1986 to describe the complete system of genes, organisms and environmental 
conditions that are necessary for replication. To replicate, crows need crow genes, bodies, worms 
and seeds to eat, nests to sleep in, and other crows to help with all the work. By adopting young 
crows to share the work of survival, a gang of crows increases the replicative fitness of the gang and 
its entire DS, and it is the DS that stably survives. 

So: how do organisms evolve to start working together to form a stable DS? Research in this area 
goes under the names of altruism, cooperation and group selection, and often focuses on a 2-person 
game called the Prisoners’ Dilemma. 

The Prisoners’ Dilemma 
Biology is full of mutualisms: situations in which living systems cooperate to the benefit of each 
other. Your cells, nuclei and mitochondria work together to benefit the one sperm or egg that will 
form your children; ants and aphids provide each other with protection and honey-dew; the zooids 
in a Portuguese man-of-war are so dependent on each other that they are physiologically 
inseparable. Yet in each of these cases, it is possible for the participants to benefit by defecting from 
this cooperation: cells can grow into tumours, and ants could ignore aphid predators. How do such 
mutualisms arise, and why do participants usually not defect? 

At each instant, two interacting organisms have two choices: Cooperate with the other or Defect. If 
they both try to Defect on each other, they might both benefit minimally, achieving an average 
payoff of 1 each. On the other hand, if they both Cooperate, they both gain the benefits of 
cooperation with a payoff of 4 each. The problem is, though, that if the aphid Cooperates and the 
ant Defects, the Defector gets a free meal of value 5, while the Co-operator gains absolutely nothing 
(0) from the encounter. The payoff matrix looks like this: 

𝑨𝑃𝐷 =
𝐶 𝐷

𝐶
𝐷

(
4 0
5 1

)
=

𝐶 𝐷
𝐶
𝐷

(
𝑅 𝑆
𝑇 𝑃

)
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This is the Prisoners’ Dilemma (PD): Shall I risk cooperating, because that will reap benefits in the 
long-run, or shall I profit from the other’s willingness to cooperate by defecting myself? 



This is not the only possible form of the PD payoff matrix – any form satisfying the requirements 
𝑇 > 𝑅 > 𝑃 > 𝑆 and 𝑅 ≥ (𝑇 + 𝑃) 2⁄  describes a PD encounter. Here, 𝑇 is the temptation to defect, 
which is greater than the reward 𝑅 for mutual cooperation. 𝑅 is in turn greater than the punishment 
𝑃 for mutual defection, and worst of all is the sucker’s payoff 𝑆 if I cooperate in the face of defection. 
The idea is that not cooperating, but mutually cooperating, is beneficial; if no-one else cooperates, 
then cooperating is bad for me. 

? Verify that our payoff matrix 𝑨𝑃𝐷 represents the payoffs for the Prisoners’ Dilemma. 

Now consider the following rational argument: If I cooperate, then you have a choice between 
gaining 4 points by cooperating or 5 points by defecting – so of course you defect. On the other 
hand, if I defect, you have a choice between gaining 0 points by cooperating or 1 point by defecting 
– so of course you defect. Thus, D dominates C: the second row of the payoff matrix shows that 
playing D always does better than playing C. If both players choose their move rationally, both will 
defect, so all they will ever gain is 1 point per encounter. 

We can look at this dilemma in terms of a population of two strategy types: C’s have a frequency of 
𝑥1 in the population and D’s have a frequency of 𝑥2. In this case, C’s have an average payoff of 𝑟1 =
4𝑥1, while D’s have an average payoff of 𝑟2 = 5𝑥1 + 𝑥2 = 4𝑥1 + 1 (since 𝑥2 = 1 − 𝑥1). But this 
means defectors always have a higher fitness than co-operators, and so will drive the co-operators 
to extinction. As a result, all individuals receive a far lower payoff than would be possible if they 
instead cooperated! 

This is the problem of the Commons: How can any population achieve the benefits of cooperating in 
their use of some common resource, if they as individuals always benefit from defecting? 

Cooperation can become beneficial in the iterated PD, where the same two players play the game 
𝑚 > 1 times. Consider the following two strategies from Martin Nowak: 

 Grim: cooperates in the first round, then cooperates if the other player doesn’t defect; if the 
other player defects just once, Grim never forgives, but will always defect. 

 AllD: always defects, in all eternity, amen. 

? Explain why this is the payoff matrix for these strategies: 

Grim AllD
Grim
AllD
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If 𝑚𝑅 > 𝑇 + (𝑚 − 1)𝑃, AllD does not dominate Grim. Indeed, Grim is also a strict Nash equilibrium: 
That is, two Grim players can never improve their score by switching to AllD. In evolutionary terms, 
if everyone in a population plays Grim, then a mutation that tries AllD can never invade the 
population, provided 𝑚 is greater than the critical value (𝑇 − 𝑃) (𝑅 − 𝑃)⁄ . 

? Explain why AllD is also a strict Nash equilibrium, provided 𝑃 > 𝑆. 

So, if cooperation is once present, it can remain stable in the population; however, we do not yet 
understand how cooperation might evolve through mutation. 

Reactive strategies 
In 1978, Robert Axelrod organised an iterated PD tournament for people from all over the world. 
Fourteen people submitted various PD strategies, and Axelrod used a computer to play all fourteen 
strategies against each other. The winner over all other strategies was Tit-For-Tat (TFT), submitted 
by the game theorist Anatol Rapoport. TFT is a forgiving version of Grim: it cooperates on the first 
round, then always plays whatever the other player played on the previous round of the iterated 
PD. 



? Explain why the following matrix correctly describes the average payoff for TFT against AllD, 
where 𝑚̅ is the average number of rounds over which PD is iterated.: 

TFT AllD
TFT
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Again, TFT is a strict Nash equilibrium – it can resist invasion by AllD, provided 𝑚̅ >
(𝑇 − 𝑃) (𝑅 − 𝑃)⁄ , but TFT has the advantage over Grim that it is not locked into defection: it can 
start cooperating again if the other player cooperates. 

TFT is an example of a reactive strategy: it decides what to do based on what happened on the 
previous iteration. We can define a reactive strategy 𝑆(𝑝, 𝑞) in terms of two probabilities 𝑝 (the 
probability that I will cooperate if you cooperated in the previous round) and 𝑞 (probability that I 
will cooperate if you defected in the previous round). 

? Explain why 𝑆(0,0) represents AllD, while 𝑆(1,0) denotes TFT. 
? How would you describe a strategy with the representation 𝑆(1,0.2)? 

We can also describe the results of this round of PD in terms of four possible states (my move and 
your move): 1:CC, 2:CD, 3:DC and 4:DD. State 1 means we both cooperate; 2 means I cooperate but 
you defect; 3 means I defect and you cooperate; and 4 means we both defect. 

Using these two ideas ((𝑝, 𝑞) strategies and state-change), we can think of the dynamics of iterated 
PD as a Markov chain: a sequence of probabilistic transitions from the state (CC, CD, DC or DD) of 
one round to the state (CC, CD, DC or DD) of the next round. That is, 𝒙𝑡+1 = 𝑴 ∙ 𝒙𝑡, where 
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? Verify that 𝑴 is a stochastic matrix – that is, the sum of entries in each column is 1. Why 
must this be true? (Hint: Think about how a basis vector is transformed by 𝑴.) 

When we discussed mutation matrices, we saw that they were stochastic matrices, and had an 
eigenvalue of 1 whose eigenvector 𝒙∗ is the long-term result of applying the stochastic matrix 
repeatedly over time. In fact, this property is quite generally true of all stochastic matrices, and so 
we can say with safety that in the long-term, the matrix 𝑴 will shift the population to a stable 
distribution 𝒙∗ satisfying an identity arising from the following eigenvalue equation: 

𝒙∗ ≡ 𝑴 ∙ 𝒙∗ 

By substituting the above definition of 𝑴 into this eigenvalue equation, Martin Nowak was able to 
show that we can always calculate the long-term payoff 𝐴 for any player that uses the strategy 

𝑆𝑖(𝑝𝑖, 𝑞𝑖) against strategy 𝑆𝑗(𝑝𝑗, 𝑞𝑗) in this way: 

(𝑨)𝑖𝑗 ≡ 𝐴(𝑆𝑖, 𝑆𝑗) = 𝑅 ∙ 𝑠𝑖𝑗𝑠𝑗𝑖 + 𝑆 ∙ 𝑠𝑖𝑗(1 − 𝑠𝑗𝑖) + 𝑇 ∙ (1 − 𝑠𝑖𝑗)𝑠𝑗𝑖 + 𝑃 ∙ (1 − 𝑠𝑖𝑗)(1 − 𝑠𝑗𝑖), 

where {

𝑠𝑖𝑗 ≡
𝑟𝑖𝑞𝑗+𝑞𝑖

1−𝑟𝑖𝑟𝑗

𝑟𝑖 ≡ 𝑝𝑖 − 𝑞𝑖

|𝑟𝑖𝑟𝑗| < 1

   (Nowak’s reactive strategy payoff) 

Using these equations, we can calculate the long-term payoffs for any two strategies for which 

|(𝑝𝑖 − 𝑞𝑖)(𝑝𝑗 − 𝑞𝑗)| ≠ 1. So, what do we do if 𝑝𝑖 − 𝑞𝑖 = ±1? 



? Explain why the only two strategies satisfying 𝑝𝑖 − 𝑞𝑖 = ±1 are 𝑆(1,0) and 𝑆(0,1). Find 
names for these two strategies. 

Your answer to this learning exercise means there are two strategies (one of them extremely 
important!) whose long-term payoff we cannot calculate using Nowak’s reactive strategy formula. 
There are two ways of dealing with this problem: either we specially calculate these cases 
individually, or we avoid them by using probabilities on the open interval 𝑝, 𝑞 ∈ (0,1). In the final 
project for this course, you should use the second of these two alternatives. 

Sample presentation graphic 

 


