
203. The idea of dynamics as flow 

What new skills will I possess after completing this laboratory? 
 Recognising bifurcation and limit cycles in continuous systems. 

 Applying the flow concept in system dynamics. 

 Constructing Kermack-McKendrick and Holling-Tanner population models. 

Why do I need these skills? 
Most important biochemical reactions are not elementary, and involve many nonlinear molecular 
interactions such as catalysis and inhibition. Ecological population models introduce us to the 
interesting varieties of behaviour that can arise in such nonlinear systems. We start by thinking 
about the continuous logistic population model: 

(1) 𝑥̇(𝑡) = 𝑟𝑥(𝑡)(1 − 𝑥(𝑡) 𝐾⁄ ), where 𝑟 > 0 is a constant, and 𝑡 ∈ (0, ∞). 

(i) To create the file Populations.jl, I simply copied the file ReactionKinetics.jl, then adapted it to 
a population model. I did not need to change the demo() method at all – only the definition 
of the model. What name do we give to this software development technique of partitioning 
code into separate blocks that we can change independently of each other? 

(ii) Run the Populations model now using the current settings of 𝑥0 = 0.01, 𝑟 = 0.2, 𝐾 = 50. 
Substitute various values of 𝑟 between 0.2 and 4.0 and observe what effect this has on the 
simulation output graph. What aspect of the curve does 𝑟 determine, and what is the 
biological meaning of 𝑟 in a real-life population? 

(iii) Now, keeping 𝑟 constant at a value around 1.0, substitute various values of 𝑥0 between 0.001 
and 4.0 and observe the effect on the output. What aspect of the curve does 𝑥0 determine, 
and what is the biological meaning of 𝑥0 in real-life populations? 

(iv) Now, keeping 𝑥0 constant at a value around 0.1, substitute various values of 𝐾 between 1.0 
and 100.0 and observe the effect on the output. What aspect of the curve does 𝐾 determine, 
and what is the biological meaning of 𝐾 in real-life populations? 

(v) If we multiply out the bracket in (1), we obtain this form containing two terms: 

(2) 𝑥̇(𝑡) = 𝑟𝑥(𝑡)(1 − 𝑥(𝑡) 𝐾⁄ ) = 𝑟𝑥(𝑡) −
𝑟

𝐾
𝑥2(𝑡) . 

What is the biological meaning of the first of these two terms in real-life populations? 

(vi) What is the biological meaning of the second of the two terms in equation (2)? 

(vii) What are the critical points of equation (1), where 𝑥̇ = 0? 

Our first finding is that the logistic population growth model is extremely boring! Indeed, it is the 
simplest non-linear dynamical model that is analytic – that is, whose behaviour we can describe by 
combining a set of standard, closed functions: 

More generally, nonlinear models can exhibit all kinds of exciting behaviour including chaotic 
behaviour. However, we need to wait a while before we can observe chaos, since the Poincaré-
Bendixson theorem implies that chaos occurs only in continuous systems with three or more 
dimensions. As a lead-up to chaos, we first look at limit cycles and bifurcation … 

What is the structure of the skills? 
The Kermack-McKendrick model is a dynamical model of the spread of either disease or ideas within 
a population 𝑃 divided into three groups: susceptibles (𝑆: individuals who are susceptible to an 



illness or an idea), infectives (𝐼: those who are able/willing to pass on the disease or idea to other 
individuals), and those who are removed (𝑅) from the population due to immunity. The ODEs are: 

(3) 𝑃 = 𝑆 + 𝐼 + 𝑅; 𝑆̇ = 𝑏 𝑆(𝑡) − 𝑎 𝑆(𝑡)𝐼(𝑡); 𝐼̇ = 𝑎 𝑆(𝑡)𝐼(𝑡) − 𝑐 𝐼(𝑡); 𝑅̇ = 𝑐 𝐼(𝑡) 

where 𝑎 is the infection rate, 𝑏 the birth rate, and 𝑐 is the recovery rate. 

Notice two important features of the equations (3): 

 First, there is a flow from group 𝑆 to group 𝐼 and from 𝐼 to 𝑅. In other words, the terms that 
deplete 𝑆 and 𝐼 are respectively equal to the terms which fill 𝐼 and 𝑅. This metaphor of flowing 
is central to system dynamics: always think of the thick arrows in an SPD as representing a 
flow of some material from one state variable to another, and always make sure that each 
flow in your diagram has a clear physical meaning. 

 Second, the flow from 𝑆 to 𝐼 contains the product 𝑆 ∙ 𝐼. As we know from the principle of mass 
action, this mathematical form implies a need for contact between two species: disease and 
ideas flow from one 
group to another through 
contact between 𝐼 and 𝑆 
individuals. 

(viii) Use these ideas to build 
the Kermack-McKendrick 
model on the right. First, 
modify the code in Populations.jl by redefining the constant model as an array of named 
tuples, of which the first is the existing logistic model, and the second is your new model. You 
will also need to insert an integer argument into demo(), to specify which model to run. 

(ix) To run the model you will need actual numerical values. Typical values for the course of a 
disease in Australia might be: 𝑎 = 7 × 10−4, 𝑏 = 12 1 000⁄ , 𝑐 = 0.5, 𝑆0 = 20 000, 𝐼0 = 5 
and 𝑅0 = 2. Run the model over a duration of 500 years. Which system dynamics archetype 
does your Kermack-McKendrick model display? 

(x) First describe, and then explain, the similarities and differences between your Australia model 
and the case of Nigeria, where 𝑏 might be around 36 1 000⁄ . 

How can I extend my skills? 
Now let’s look at some of the interesting things that can happen with nonlinear DEs. You already 
know the Lotka-Volterra equations for the interactions between predators (𝑦) and their prey (𝑥). 
However, the L-V equations are rather unrealistic. For one thing, they assume that predators are 
capable of eating incredible amounts of prey: the contact term is proportional to the product 𝑥𝑦, so 
if we multiply the value of 𝑥 by 1000, it should result in the predators suddenly eating 1000-times 
as much food! 

Holling and Tanner introduced the following equations to solve this modelling problem: 

(4) 𝑥̇ = 𝑟1𝑥 (1 −
𝑥

𝑘
) −

𝑤𝑥

𝑑+𝑥
𝑦 ; 𝑦̇ = 𝑟2𝑦 (1 −

𝑁𝑦

𝑥
) 

In these equations, the term 𝑥(1 − 𝑥 𝑘⁄ ) represents logistic growth of the prey in isolation; 
𝑤𝑥𝑦

(1+𝑥)
 

represents saturated predation (think of Hill functions!); and 0.2𝑦(1 − 𝑁𝑦 𝑥⁄ ) models logistic 
predator growth in which each predator requires 𝑁 prey to survive. 

(xi) The H-T equations contain six unspecified parameters, making them rather difficult to work 
with mathematically. However, each of these parameters has a biological meaning. Discuss 
with partners what each parameter means, and specify appropriate units for each parameter, 
assuming that we measure time in years. 
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For now, we assume that 𝑟1 = 1, 𝑘 = 7, 𝑤 = 6

7
, 𝑑 = 1 and 𝑟2 = 0.2, giving us these equations: 

(5) 𝑥̇ = 𝑥 (1 −
𝑥

7
) −

6𝑥𝑦

7+7𝑥
 ; 𝑦̇ = 0.2𝑦 (1 −

𝑁𝑦

𝑥
) 

(xii) Use flows to build this H-T model for the specific case 𝑁 = 2.5. In your model, treat 𝑁 as a 
parameter, and change demo() to draw an 𝑥𝑦 phase-plot of the two species 𝑥 and 𝑦. 

(xiii) Now use plot!() to plot a phase portrait of the H-T system that repeatedly adds trajectories to 
the current axes. Build up a portrait of the behaviour of the system by choosing various initial 
values for 𝑥 and 𝑦 covering the range [0,10] × [0,5]. You should be able to observe two 
different types of critical points in your portrait. 

(xiv) Change the value of 𝑁 to 0.5; what two critical points can you find now? 

You have just discovered two important phenomena in dynamical systems. The behaviour in 
exercise (xiii) cycles around a centre, and all trajectories converge to this cycle – hence it is called a 
limit cycle. Also, when 𝑁 changes smoothly from 0.5 to 2.5, the behaviour of the system (5) changes 
suddenly from attraction to cycles. We call this rapid, qualitative change in the dynamics of a system 
a bifurcation (i.e., “branching in two”). 

(xv) Explore the bifurcation of the H-T system (5). Substitute different values of 𝑁 to look for the 
approximate value of 𝑁 at which the bifurcation occurs, and describe in detail the story of 
how the transition from attraction to cycling occurs. 

How can I deepen my practice of the skills? 
(xvi) Repeat the work of exercises (xiii) to (xv), using BOTGs instead of phase portraits to find the 

period of the limit cycles for 𝑁 = 0.5. If we measure time in 6-month intervals, this model 
represents well the data for populations of lynx and hare. Which of the two representations, 
BOTG or phase-plot, is more convenient for which purposes? 

(xvii) Imagine that two competing species are modelled by the equations 𝑥̇ = 𝑥(2 − 𝑥 − 𝑦) and 
𝑦̇ = 𝑦(𝑐 − 𝑦 − 𝑐2𝑥), where 𝑐 is a constant parameter. Use the techniques of this lab to 
investigate, describe and explain the qualitative behaviour of this system as 𝑐 varies. 

 
 


