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Abstract

It is well known, that the Chinese Remainder Theorem is valid
under the condition of mutual co-prime multiple modules. This paper
gives a generalization to the case of non-co-prime modules. The con-
structive proof allows to derive an efficient algorithm, which can be
easily parallelized.

1 Theorems and Proofs

It is well known that the following Theorem is valid.

Theorem 1. Chinese Remainder Theorem
Given n ≥ 1 and a set of mutual co-prime positive integers mi and

corresponding remainders ai with 0 ≤ ai < mi for i = 1, 2, . . . n. Then
there exists exactly one x with 0 ≤ x < m1m2 · · ·mn which solves the
equations x ≡ ai mod mi for all i = 1 · · ·n. [2, ch. 4.3.2, p. 286]

This theorem becomes invalid, if we drop the condition of mutual
co-primeness. For example there is no solution for x ≡ 0 mod 20; x ≡
1 mod 50, while for x ≡ 1 mod 20; x ≡ 11 mod 50 we have 10 solu-
tions {61, 161, . . . , 961}.

At first, we will proof a necessary condition on the remainders, if
a solution is to exist.

Theorem 2. Necessary condition on remainders
Let m1,m2, . . . ,mn be positive and x, a1, a2, . . . , an be integers,

which solve the equations

∀i∈1···n x ≡ ai mod mi. (2.1)

Then we have

∀i,j∈1···n ai ≡ aj mod gcd (mi,mj) (2.2)

Proof. From (2.1) and because gcd (mi,mj) |mi we conclude, that
x ≡ ai mod gcd (mi,mj) for all i, j. By eliminating x for each pair
of i, j the assertion follows immediately.

We will give a generalization of Theorem 1, which replaces the
co-primeness condition on mi by the necessary condition (2.1). We
restrict in a first step to the case n = 2 and prove the following:
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Theorem 3. Generalized Chinese Remainder Theorem - two modules

Let p, q, a, b ∈ Z integers with 0 ≤ a < p and 0 ≤ b < q. If

a ≡ b mod gcd (p, q) , (3.1)

then there exists a unique x ∈ Z with

x ≡ a mod p and x ≡ b mod q. (3.2)

0 ≤ x < lcm (p, q) and (3.3)

The solution is given by formula

x = a + p mod

(
u

(
b− a

c

)
,
q

c

)
with c = gcd (p, q) and u =

(p
c

)−1
mod

q

c
.

(3.4)

Proof. Uniqueness: Assume x and y solve equations (3.2). Then by
subtracting we obtain x ≡ y mod p and x ≡ y mod q. Then x ≡ y
mod lcm (p, q) by equation (L2) of Lemma 1. Because of (3.3) x = y.

Construction of solution: We give a closed formula for an x solving
(3.2) and (3.3) under condition (3.1).

Let c := gcd (p, q). We can write a = a2 + ca1 and b = a2 + cb1
with 0 ≤ a2 < c, because a ≡ b mod c. The equations become
x = a2 + ca1 + cp1r and x = a2 + cb1 + cq1. Here p1 := p/c and
q1 := q/c. p1 and q1 are co-prime. By introducing a new variable y,
substituting

x = cy + a2, and dividing by c, we obtain (1)

y = a1 + p1r and y = b1 + q1s. (2)

Theorem 1 asserts the existence and uniqueness of y with 0 ≤ y <
p1q1. We try to calculate y, r, and s.

There is a unique inverse u of p1 modulo q1, i.e.up1 = 1 + q1v
with 0 ≤ u < q1, which can be calculated by a the Extended Euclid’s
algorithm [2, ch. 4.5.2, Theorem X, p.342]. We subtract equations
(2) and multiply with u to obtain

u (b1 − a1) = up1r − uq1s

= r + q1vr − uq1s

= r + (vr − us) q1, hence

p1r = p1 [u (b1 − a1)] + (us− vr) p1q1,
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thus (2) becomes

y = a1 + p1 [u (b1 − a1)] + (us− vr) p1q1.

If we perform the calculation of u (b1 − a1) modulo q1, we get u (b1 − a1) =
mod (u (b1 − a1) , q1)+kq1 for some k, to obtain finally the solution in
terms of y:

y = a1 + p1 mod (u (b1 − a1) , q1) + (us− vr + k) p1q1.

Because 0 ≤ a1 < p1 and 0 ≤ mod (·, q1) ≤ q1 − 1, we have

0 ≤ a1 + p1 mod (u (b1 − a1) , q1) ≤ a1 + p1 (q1 − 1) < p1q1.

Therefore
y = a1 + p1 mod (u (b1 − a1) , q1)

is the unique solution of (2), with 0 ≤ y < p1q1. Re-substituting x in
(1) gives x = a2 + ca1 + pmod (u (b1 − a1) , q1) and using the original
values

x = a + pmod (u ((b− a) /c) , q/c)

with c = gcd (p, q) and u = mod (p/c, q/c) .
(3.4)

We claim that x of (3.4) is the unique solution of (3.2) and (3.3).
First part of (3.2) is obvious. For the second we have to prove
a + p (u (b− a) /c− kq/c) ≡ b mod q. That is equivalent to a − b +
p1u (b− a) − p1kq ≡ 0 mod q. Since p1u = 1 + q1v, that reduces
further to a − b + b − a + q1v (b− a) ≡ 0 mod q, or qv (b1 − a1) ≡ 0
mod q, which is valid.

To prove (3.3), we use 0 ≤ a < p and 0 ≤ mod (·, q/c) ≤ q/c− 1 to
conclude 0 ≤ x < p + p (q/c− 1) = pq/c = lcm (p, q).

We can now formulate the main theorem of this article.

Theorem 4. Generalized Chinese Remainder Theorem
Let m1,m2, . . . ,mn be positive and a1, a2, . . . , an be integers with

0 ≤ ai < mi satisfying for all i, j ∈ {1 · · ·n} the conditions

ai ≡ aj mod gcd (mi,mj)

Then there is exactly one integer x with 0 ≤ x < lcm (mi | i ∈ {1 · · ·n}),
which satisfies

x ≡ ai mod mi for i ∈ {1 · · ·n} .

5



Proof.
For the purpose of this proof, we define lcmI := lcm ({mi | i ∈ I})

The theorem is valid independent of the chosen finite index set. So
we can write mi for i ∈ I with |I| <∞ without changing the proof.

If n = 1 the assertion is trivially true with x = a1.
If n > 1 we conduct a proof by induction on n.

Assume, the assertion of the theorem was true for all index sets
I with |I| < n. Then we can derive the assertion using previous The-
orem 3. We split the complete index set into two non-empty subsets
I, J 6= ∅ with I ∪ J = {1 · · ·n}. Because of the induction assumption,
for K ∈ {I, J} there is a xK with

0 ≤ xK < lcmK and ∀i∈K xK ≡ ai mod mi. (3)

We want to apply Theorem 3 with a = xI , b = xJ , p = lcmI , q = lcmJ .
The necessary condition (3.1) reads now

xI ≡ xJ mod gcd (lcmI , lcmJ) .

Because of (3) ∀i∈I∀j∈J xI ≡ ai mod gcd (mi,mj) and xJ ≡ aj
mod gcd (mi,mj), using conclusion (L1) of Lemma 1.
Hence ∀i∈I∀j∈J xI − xJ ≡ ai − aj ≡ 0 mod gcd (mi,mj), which is
equivalent by Lemma 1 (L2) to

xI ≡ xJ mod lcm ({gcd (mi,mj) | i ∈ I, j ∈ J}) .

Then the necessary condition follows, because of Lemma 1 (L3) and
(L1).

Theorem 3 delivers a unique 0 ≤ x < lcm (lcmI , lcmJ) with x ≡ xI
mod lcmI ∧ x ≡ xJ mod lcmJ . Because of Lemma 1 (L1) and
mi | lcmI we have ∀i∈I x ≡ xI mod mi. So x ≡ ai mod mi because
of (3). The same is true ∀i∈J .

The proofs need some auxiliary facts from elementary number the-
ory, which are noted in the following:

Lemma 1. In all statements below let

x, y, a, u ∈ Z, I, J finite index sets, and ∀i∈I∪J mi ∈ N
lcmI := lcm ({mi | i ∈ I})

then
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x ≡ y mod u =⇒ ∀a |u x ≡ y mod a (L1)

∀i∈I x ≡ y mod mi ⇐⇒ x ≡ y mod lcmI (L2)

lcm (lcmI , lcmj) = lcmI∪J (L3)

gcd (lcmI , lcmJ) divides lcm ({gcd (mi,mj) | i ∈ I, j ∈ J}) (L4)

Proof.
(L1): If u = ka and x = y+vu for some k, v ∈ Z, then x = y+(vk) a,
hence x ≡ y mod a.

(L2): ⇐= is clear because ∀i∈I mi | lcmI and (L1).
=⇒ : To see that we assume x− y = k mod lcmI with 0 ≤ k <

lcmI and show, that k = 0. Because ∀imi | lcmI , we have x − y =
k + lcmI u = k + miui for some u, ui. Because ∀i x–y ≡ 0 mod mi,
∃vi x− y = mivi, hence k = mi (vi − ui). That means k is a multiple
of all mi, hence of lcmI , by the definition of lcm. The only k with
0 ≤ k < lcmI is k = 0.

(L3)” ≥ ” : because lcm (lcmI , lcmJ) = lcmI kI and lcmI = mikiI
for some kI , kiI∀i∈I , we have lcm (lcmI , lcmJ) = mikIkiI, that means
the left-hand side is a multiple of mi∀i∈I . Accordingly, it is a multiple
of mj∀j∈J . Then, by definition of lcm it is ≥ lcmI∪J .

” ≤ ” : lcmI∪J is a multiple of mi∀i∈I , hence of lcmI by defini-
tion of lcmI ; accordingly also of lcmJ . Then it is also a multiple of
lcm (lcmI , lcmJ). So the right-hand side is ≥ the left-hand side.

(L4): We make use of the Fundamental Theorem of Arithmetic [1,
chapter 1.2.4, exercise 21], which proves the unique prime-factorization
of the natural numbers. For each number n ∈ N and each prime num-
ber p there is a unique exponent up (n) ∈ N ∪ {0}, such that

n =
∏

p prime

pup(n).

where only a finite amount of the up (n) 6= 0. Then we have

gcd (m,n) =
∏

p prime

pmin(up(m),up(n))

lcm (m,n) =
∏

p prime

pmax(up(m),up(n))
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or for each prime p

m |n ⇐⇒ ∀p up (m) ≤ up (n)

up (gcd (m,n)) = min (up (m) , up (n))

up (lcm (m,n)) = max (up (m) , up (n))

Then (L4) ( we set upi := up (mi) ) is equivalent to

∀p min (max ({upi | i ∈ I}) ,max ({upj | j ∈ J}))
≤max ({min (upi, upj) | i ∈ I, j ∈ J})

(4)

There is an imax ∈ I with upimax = max ({upi | i ∈ I}); as well as an
jmax ∈ J . Inserting these into the left-hand side of (4) gives

min (upimax , upjmax) ≤ max ({min (upi, upj) | i ∈ I, j ∈ J})

which is obviously true for all prime numbers p.

2 Algorithms

From Theorem 3 we can straightforward derive the following proce-
dure:

Algorithm 1.
procedure crt2(a, b, p, q)
Input: a, b, p, q: integers p, q > 0
Output: x, lcm: solution, least common multiple of p and q
Errors: fail if a 6= b mod gcd (p, q)
External: gcdx: calculate greatest common divisor
and inverse of co-prime pair

c, u := gcdx(p, q)

p1, q1 := p/c, q/c

u := mod(u, q1)

if mod(b− a, c) 6= 0 Error(”remainders′condition”)

bac := (b− a)/c

x := a + p ∗mod(u ∗ bac, q1)
lcm := p ∗ q1
return x, lcm
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Theorem 4 provides some freedom in partitioning the original set.
If n = 1 we return the trivial solution or we apply Algorithm 1. Oth-
erwise, we split {1 · · ·n} two partitions and apply Theorem 4.

Algorithm 2.
procedure crtg(a, m)
Input: a, m: integer vectors of same lengths, m > 0
Output: x, lcm: solution, least common multiple of m
Errors: fail if ai 6= aj mod gcd (mi,mj) for any i, j
External: crt2: see above

n := length(a)

xI , lcmI := 1, 1

for i := 1 . . . n

xI , lcmI := crt2(xI , a[i], lcmI ,m[i])

end

return xI , lcmI
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