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Abstract

It is well known, that the Chinese Remainder Theorem is valid
under the condition of mutual co-prime multiple modules. This paper
gives a generalization to the case of non-co-prime modules. The con-
structive proof allows to derive an efficient algorithm, which can be
easily parallelized.

1 Theorems and Proofs

It is well known that the following Theorem is valid.

Theorem 1. Chinese Remainder Theorem

Givenn > 1 and a set of mutual co-prime positive integers m; and
corresponding remainders a; with 0 < a; < my; fori=1,2,...n. Then
there exists exactly one x with 0 < x < mimsg - --m, which solves the
equations © = a; mod m; for alli=1---n. [2, ch. 4.3.2, p. 286]

This theorem becomes invalid, if we drop the condition of mutual
co-primeness. For example there is no solution for x =0 mod 20; x =
1 mod 50, while for x =1 mod 20; x =11 mod 50 we have 10 solu-
tions {61,161, ...,961}.

At first, we will proof a necessary condition on the remainders, if
a solution is to exist.

Theorem 2. Necessary condition on remainders
Let mi,mo,...,m, be positive and x,ay,as,...,a, be integers,
which solve the equations

Viel..n T = a; mod m;. (2.1)
Then we have

Vijel.m @i = aj mod ged (my, my) (2.2)

Proof. From (2.1) and because ged (m;, m;) |m; we conclude, that
x = a; mod ged (m;, m;) for all ¢,j. By eliminating x for each pair
of 7, 7 the assertion follows immediately. O

We will give a generalization of Theorem 1, which replaces the
co-primeness condition on m; by the necessary condition (2.1). We
restrict in a first step to the case n = 2 and prove the following:



Theorem 3. Generalized Chinese Remainder Theorem - two modules

Let p,q,a,b € Z integers with 0 < a <p and 0 < b < q. If
a=b mod ged(p,q), (3.1)

then there exists a unique x € Z with

r=a modpandxr =b mod q. (3.2)

0<z<lem(p,q) and (3.3)

The solution is given by formula

T=a+p mod<“<b;a>’z> (3.4)

L _ (p\! q
with ¢ = ged (p,q) and u = - mod —

Proof. Uniqueness: Assume z and y solve equations (3.2). Then by
subtracting we obtain x = y mod p and x =y mod gq. Then z =y
mod lem (p, q) by equation (L2) of Lemma 1. Because of (3.3) z = y.

Construction of solution: We give a closed formula for an x solving
(3.2) and (3.3) under condition (3.1).

Let ¢ := ged (p,q). We can write a = ag + ca; and b = ag + ¢by
with 0 < as < ¢, because a = b mod c¢. The equations become
x = ag + cay + epir and © = ag + ¢by + ¢q1. Here p; := p/c and
q1 := q/c. p1 and ¢ are co-prime. By introducing a new variable vy,
substituting

T = cy + as, and dividing by ¢, we obtain (1)
y=a1+pir and y = by + q18. (2)

Theorem 1 asserts the existence and uniqueness of y with 0 < y <
p1q1. We try to calculate y, r, and s.

There is a unique inverse u of p; modulo g, i.e.up; = 1 + quv
with 0 < u < g1, which can be calculated by a the Extended Euclid’s
algorithm [2, ch. 4.5.2, Theorem X, p.342]. We subtract equations
(2) and multiply with u to obtain

u(by —ay) = up1r —uqis
=r+qur—uqs
=r + (vr — us) q1, hence

pir = p1[u(by —a1)] + (us — vr) p1qi,



thus (2) becomes

y=a1+pi|u(by —a1)] + (us —vr) p1qi.

If we perform the calculation of u (b — a1) modulo g1, we get u (by — a1) =
mod (u (by — a1),q1) + kg1 for some k, to obtain finally the solution in
terms of y:

y =ai +pimod (u(by —a1),q) + (us —vr + k) p1qi.
q1

)
Because 0 < a; < p; and 0 <mod (-, q1) < ¢1 — 1, we have

0<a+pmod(u(br—ar),q) <ar+pi (g —1) <praa-

Therefore
y =ai +prmod (u(by —a1),q)
is the unique solution of (2), with 0 < y < p1¢1. Re-substituting z in
(1) gives © = az + car + pmod (u (b1 — a1) ,q1) and using the original
values

z=a+pmod(u((b—a)/c),q/c)

3.4
with ¢ = ged (p,¢) and w = mod (p/c, q/c) . (3:4)

We claim that x of (3.4) is the unique solution of (3.2) and (3.3).
First part of (3.2) is obvious. For the second we have to prove
a+p(u(b—a)/c—kq/c) =b mod q. That is equivalent to a — b+
piu(b—a) — pitkg = 0 mod ¢q. Since pju = 1 + qiv, that reduces
further toa —b+b—a+ qv(b—a) =0 mod ¢, or qu(by —a1) =0
mod ¢, which is valid.
To prove (3.3), we use 0 < a < p and 0 < mod (+,q/c) < g/c—1 to
conclude 0 <z <p+p(q/c—1) =pgq/c=lem (p,q).
O

We can now formulate the main theorem of this article.

Theorem 4. Generalized Chinese Remainder Theorem
Let mi,ma,...,my be positive and a1, a9, ...,a, be integers with
0 < a; < my satisfying for all i,j € {1---n} the conditions

a; =a; mod ged (my,m;)

Then there is exactly one integer x with 0 < x < lem (m; | i € {1---n}),
which satisfies

x=a; modm; forie{l---n}.



Proof.
For the purpose of this proof, we define lemy := lem ({m; | i € I})
The theorem is valid independent of the chosen finite index set. So
we can write m; for i € I with || < oo without changing the proof.
If n = 1 the assertion is trivially true with x = a;.
If n > 1 we conduct a proof by induction on n.
Assume, the assertion of the theorem was true for all index sets
I with |I| < n. Then we can derive the assertion using previous The-
orem 3. We split the complete index set into two non-empty subsets
I,J# () with TUJ = {1---n}. Because of the induction assumption,
for K € {I,J} there is a xx with

0 <zg <lemg and Viex Tk = a; mod m;. (3)

We want to apply Theorem 3 with a = x7,b = x5,p = lcmy, ¢ = lemj.
The necessary condition (3.1) reads now

xy =xy mod ged (lemy,lemy) .

Because of (3) VierVjes zr = a; mod ged (m;, m;) and z; = a;
mod ged (m4, mj), using conclusion (L1) of Lemma 1.

Hence Vic/Vjcs 1 — x5 = a; —aj = 0 mod ged (m;, m;), which is
equivalent by Lemma 1 (L2) to

zr =x; mod lem ({ged (my,m;) |iel,jeJ}).

Then the necessary condition follows, because of Lemma 1 (L3) and

(L1).
Theorem 3 delivers a unique 0 < z < lem (lemy, lemy) with x = 27
mod lem; A x = x; mod lem;. Because of Lemma 1 (L1) and

m; |lem; we have Vier © = ;7 mod m;. So x = a; mod m; because
of (3). The same is true Ve .
O

The proofs need some auxiliary facts from elementary number the-
ory, which are noted in the following:

Lemma 1. In all statements below let

x,y,a,u € Z,1,J finite index sets, and Vicrug m; € N
lemy :=lem ({m; | i € I})

then



r=y modu = VY, ,z=y moda (L1)
Vierx=y modm; <= x =y mod lemy (L2)
lem (lemy,lem;) = lemjpyy (L3)

ged (lemy,lemy) divides lem ({ged (my,m;) i€ I,j € J}) (L4)

Proof.
(L1): If u = ka and © = y+vu for some k,v € Z, then z = y+ (vk) a
hence z =y mod a.

(L2): <= is clear because V;c; m;|lem; and (L1).

— : To see that we assume x — y = k mod lem; with 0 < k <
lem; and show, that £k = 0. Because V;m; |lecm;, we have z —y =
k + lem;u = k + m;u; for some u,u;. Because V; x—y = 0 mod m;,
3y, © —y = myv;, hence k = m; (v; — u;). That means k is a multiple
of all m;, hence of lecmj, by the definition of lcm. The only k with
0<k<lemyis k=0.

(L3)” > 7 : because lem (lemy, lemy) = lemy kr and lemp = m;kir
for some kr, kirVicr , we have lem (lemy, lem j) = m;krk;I, that means
the left-hand side is a multiple of m;V;c; . Accordingly, it is a multiple
of m;Vjes . Then, by definition of lem it is > lemyy .

7 <7 ¢ lempyy is a multiple of m;V;c; , hence of lem; by defini-
tion of lemy; accordingly also of lemy. Then it is also a multiple of
lem (lemy,lemy). So the right-hand side is > the left-hand side.

(L4): We make use of the Fundamental Theorem of Arithmetic [1,
chapter 1.2.4, exercise 21], which proves the unique prime-factorization
of the natural numbers. For each number n € N and each prime num-
ber p there is a unique exponent u, (n) € NU {0}, such that

H pup(n

p prime

where only a finite amount of the u, (n) # 0. Then we have

ng m, 7’L H pmm up(m),up(n))

p prime

lcm m n H pmax up(m),up(n))

p prime



or for each prime p

m|n < Yy up(m) < up(n)
up (ged (m,n)) = min (up (M) , up (n))

up (lem (m,n)) = max (up (M) , up (n))

Then (L4) ( we set up; = uy (m;) ) is equivalent to

Vp min (max ({up; | 7 € I}) ,max ({uy; | j € J}))
<max ({min (up;, up;) |1 € I,j € J})

(4)

There is an iyq,; € I with uy;,,, = max ({up; | i € I}); as well as an
Jmaz € J. Inserting these into the left-hand side of (4) gives

M (Upia s Upjimar) < Max ({min (upi, upj) [ i € 1,5 € J})

which is obviously true for all prime numbers p. O

2 Algorithms

From Theorem 3 we can straightforward derive the following proce-
dure:

Algorithm 1.

procedure crt2(a, b, p, q)

Input: a, b, p, q: integers p, ¢ > 0

Output: x, lem: solution, least common multiple of p and q
Errors: fail if a # b mod ged (p, q)

Ezxternal: gedx: calculate greatest common divisor

and inverse of co-prime pair

c,u = gedz(p, q)

p1,q1 = p/c,q/c

u := mod(u, q1)

if mod(b— a,c) # 0 Error(”remainders’condition”)
bac := (b—a)/c

x :=a+ p*mod(u * bac, qy)

lem:=p*q

return z,lem



Theorem 4 provides some freedom in partitioning the original set.
If n = 1 we return the trivial solution or we apply Algorithm 1. Oth-
erwise, we split {1---n} two partitions and apply Theorem 4.

Algorithm 2.

procedure crtg(a, m)

Input: a, m: integer vectors of same lengths, m > 0
Output: x, lem: solution, least common multiple of m
Errors: fail if a; # a; mod ged (my, mj) for any i, j
External: crt2: see above

n := length(a)
xr,lemr:=1, 1
fori:=1...n
xr,lemy := ert2(zy, ali], lemp, mli])
end

return xy,lemy
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