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Summary
Quantum algorithms are an area of intensive research thanks to their potential
of speeding up certain specific tasks exponentially. However, for the time being,
high error rates on the existing hardware realizations preclude the application
of many algorithms that are based on the assumption of fault-tolerant quan-
tum computation. On such noisy intermediate-scale quantum (NISQ) devices
(Preskill 2018), the exploration of the potential of heuristic quantum algorithms
has attracted much interest. A leading candidate for solving combinatorial opti-
mization problems is the so-called Quantum Approximate Optimization Algorithm
(QAOA) (Farhi, Goldstone, and Gutmann 2014).

QAOA.jl is a Julia package (Bezanson et al. 2017) that implements the mean-
field Approximate Optimization Algorithm (mean-field AOA) (Misra-Spieldenner
et al. 2023) - a quantum-inspired classical algorithm derived from the QAOA
via the mean-field approximation. This novel algorithm is useful in assisting the
search for quantum advantage by providing a tool to discriminate (combinatorial)
optimization problems that can be solved classically from those that cannot.
Note that QAOA.jl has already been used during the research leading to (Misra-
Spieldenner et al. 2023).

Additionally, QAOA.jl also implements the QAOA efficiently to support the
extensive classical simulations typically required in research on the topic. The
corresponding parameterized circuits are based on Yao.jl (Luo et al. 2020), (Luo
et al. 2023) and Zygote.jl (Innes et al. 2019), (Innes et al. 2023), making it both
fast and automatically differentiable, thus enabling gradient-based optimization.
A number of common optimization problems such as MaxCut, the minimum
vertex-cover problem, the Sherrington-Kirkpatrick model, and the partition
problem are pre-implemented to facilitate scientific benchmarking.
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Statement of need
The demonstration of quantum advantage for a real-world problem is yet out-
standing. Identifying such a problem and performing the actual demonstration
on existing hardware will not be possible without intensive (classical) simula-
tions. QAOA.jl facilitates this exploration by offering a classical baseline through
the mean-field AOA, complemented by a fast and versatile implementation
of the QAOA. As shown in our benchmarks, QAOA simulations performed
with QAOA.jl are significantly faster than those of PennyLane (Bergholm et
al. 2018), one of its main competitors in automatically differentiable QAOA
implementations. While Tensorflow Quantum (Broughton et al. 2023) supports
automatic differentiation, there exists, to the authors’s knowledge, no dedicated
implementation of the QAOA. The class QAOA offered by Qiskit (A-tA-v et al.
2021) must be provided with a precomputed gradient operator, i.e. it does not
feature automatic differentiation out of the box.
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