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Natural Frequencies of
Submerged Structures Using an
Efficient Calculation of the
Added Mass Matrix in the
Boundary Element Method
This work presents an efficient way to calculate the added mass matrix, which allows
solving for natural frequencies and modes of solids vibrating in an inviscid and infinite
fluid. The finite element method (FEM) is used to compute the vibration spectrum of a dry
structure, then the boundary element method (BEM) is applied to compute the pressure
modes needed to determine the added mass matrix that represents the fluid. The BEM
requires numerical integration which results in a large computational cost. In this work,
a reduction of the computational cost was achieved by computing the values of the pres-
sure modes with the required numerical integration using a coarse BEM mesh, and then,
interpolation was used to compute the pressure modes at the nodes of a fine FEM mesh.
The added mass matrix was then computed and added to the original mass matrix of the
generalized eigenvalue problem to determine the wetted natural frequencies. Computa-
tional cost was minimized using a reduced eigenvalue problem of size equal to the
requested number of natural frequencies. The results show that the error of the natural
frequencies using the procedure in this work is between 2% and 5% with 87% reduction
of the computational time. The motivation of this work is to study the vibration of marine
mammals’ ear bones. [DOI: 10.1115/1.4041617]

1 Introduction

The natural frequencies and modes of vibration of a structure
are usually obtained from the solution of an eigenproblem involv-
ing the mass and stiffness matrices of the structure. In some
approaches, extra terms are added to the mass matrix to obtain the
natural frequencies of a structure submerged in fluid. These terms
are called the “added mass” matrix, which account for inertia
changes at low frequencies associated with the motion of the fluid
caused by the body acceleration of the structure. Similar defini-
tions of “added mass” can be found in the literature as in the work
by Lin and Liao [1] and by Gassemi and Yari [2].

Several publications have defined different ways to obtain the
added mass matrix or alternatively coupling matrices to solve
fluid-structure interaction problems [1–12]. Three interesting pro-
cedures to compute the added mass matrix are described in the
work by Geers [3], Deruntz and Geers [4], and Antoniadis and
Kanarachos [5]. Geers [3] used doubly asymptotic approximations
to obtain the acoustic response of the structure. Doubly asymp-
totic approximations are differential equations for boundary ele-
ment analysis used to solve fluid-structure interaction and their
formulation is based on the representation of the motion of the
surface as a linear combination of orthogonal fluid boundary
modes. This procedure avoids the use of the boundary element
method (BEM), reducing the cost of the analysis. Another advant-
age of the method is that it is asymptotically exact for low and
high frequencies. In the work by Deruntz and Geers [4], a two-
dimensional mesh is built on the wet surface of the structure as a
first step, and in the second step, a discrete boundary integral
method (BIM) is implemented for the treatment of fluid-structure
interaction effects. The method in Ref. [4] gives the added mass

matrix directly from the matrices obtained in the discrete BIM,
provided the velocity of the structure and the fluid are considered
to be equal and have common nodes. Antoniadis and Kanarachos
[5] presented a general methodology to decouple the structure and
fluid domains for modal analysis. They used the common proce-
dure based on the implementation of the finite element method
(FEM) to compute the basis vectors of the structure and the corre-
sponding mass and stiffness matrix terms of the dry structure,
while the BIM is used to solve a set of potential (Laplacian) prob-
lems for the fluid that gives the basis vectors of the fluid pressure
also called pressure modes. In Antoniadis and Kanarachos
approach [5], each term of the added mass matrix is a function of
the modes of vibration of the dry structure, the pressure modes,
the normal vector of the boundary element, and the density of the
fluid. In addition, Antoniadis and Kanarachos used general coordi-
nate transformations to simplify the expression of the stiffness
and mass matrices of the structure. Furthermore, Antoniadis and
Kanarachos reported that the FEM can be used instead of the
BIM, which is the procedure used by Rajasankar et al. [8] and
more recent publications use the fast multipole boundary element
method such as Refs. [1,12].

In vibro-acoustic analysis using the FEM, it is necessary to
include a large amount of degrees-of-freedom (DOF) in the struc-
ture to obtain accurate results. For instance, Jensen et al. [13] rec-
ommend using at least 10 elements per wavelength. In addition, it
is often required to compute the response of a structure for stimuli
at different frequencies. However, using a large number of ele-
ments to discretize the structure means that the number of
unknowns corresponding to the discretization of the surface for
the BEM could also be very large. The BEM simulation unfortu-
nately scales poorly with respect to the number of unknowns as
the coefficient matrix is fully populated. Thus, a method to reduce
the cost of the BEM simulations is highly desirable.

This work uses the procedure by Antoniadis and Kanarachos
with the difference that the pressure modes are first obtained on a
coarse BEM mesh, and then, the pressure mode values on a finer
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BEM mesh are obtained by linear interpolation. It is important to
keep in mind that the motivation of this work is to solve for natu-
ral frequencies of marine mammals’ ear bones from which models
are produced using a computed tomography scanner. The resolu-
tion of models built by cubic voxels obtained from computed
tomography scanners is very fine. For these reasons when working
with marine mammal’s ear bones models, it was necessary to
reduce the size and to smooth the surface of the model with trian-
gular plate elements. For this reason, it was not necessary to
implement routines for curved boundary elements. Another
advantage of this approach is that it allows to compute the natural
frequencies of unconstrained submerged structures without spuri-
ous modes. This is a very relevant characteristic of the method,
because ear bones of many marine mammals are not attached to
the skull. In this work, an ear bone of a marine mammal is mod-
eled as an unconstrained structure.

Although damping can also influence the frequencies and
modes of the submerged structure, the effects of structural damp-
ing are not taken into account in this work. Excitation of the struc-
ture by intermodal coupling is also not taken into account.

A previous conference paper by Monterrubio and Krysl [14]
presents a “pilot project” of this work presenting the results of (a)
a cantilever plate and (b) an unconstrained plate, while the current
paper includes the procedure and results of (a) two different
plates, (b) two different unconstrained cylinders, and (c) a marine
mammal’s ear-bone.

2 Theoretical Derivations

The main purpose of this work is to reduce the computational
cost of the pressure modes’ calculations to obtain the natural fre-
quencies of submerged structures of complex geometry such as
marine mammals’ ear bones.

In the first step, the FEM is used with an appropriately fine mesh
to obtain the mass and stiffness matrices, and subsequently, the natu-
ral frequencies and the modes of the dry structure. In the second
step, the pressure modes, due to the interaction of the structure with
a fluid, are computed using the BEM using a coarse mesh. The loca-
tion of the nodes of the coarse mesh coincides with the location of
some of the nodes of the fine mesh; this allows to compute the pres-
sure modes on the fine mesh using linear interpolation. Then, the
added mass matrix is computed and included in the generalized
eigenvalue problem which results in giving the wetted-structure natu-
ral frequencies. Thus, the present work follows the procedure given
by Antoniadis and Kanarachos [5], but speeds up the computation of
the pressure modes eliminating a good number of the numerical inte-
grations necessary in the BEM to obtain the pressure modes.

The procedure in Antoniadis and Kanarachos [5] showed that
the vibration problem of a submerged structure can be decoupled
into two main subproblems as follows:

Step 1: Compute the mass and stiffness matrices and solve the
free-vibration problem of the dry structure using the FEM

Kc� x2Mc ¼ 0 (1)

where K is the stiffness matrix, M is the mass matrix, x is the cir-
cular frequency, and c is a vector of unknown coefficients. The
solution of the generalized eigenproblem in Eq. (1) gives the natu-
ral frequencies xi of the structure and the matrix W in which col-
umns wi are the corresponding ith orthogonal eigenvectors that
define the modes of vibration.

Then, the matrix W and its transpose WT are used to diagonalize
the stiffness and mass matrices, provided the eigenvectors are
M-orthonormal

WTKW ¼ X2 (2)

WTMW ¼ I (3)

where X2 is a diagonal matrix containing the eigenvalues of Eq.
(1) in which square roots are the circular natural frequencies xi of

the structure and I is the identity matrix. In the work by Antonia-
dis and Kanarachos [5], the stiffness, mass, and added mass matri-
ces are normalized in such a way that the stiffness matrix
becomes an identity matrix. Following this normalization, mii

terms of the diagonal mass matrix are equal to the inverse of the
ith eigenvalues and the terms m�ij of the added mass terms are
divided by the square root of the product of the ith and jth eigen-
values. This step (normalization) is skipped in the present work.

Step 2: Solve the Laplacian problems with the BEM for the
fluid using the dry eigenvectors to obtain the pressure modes.

The potential (Laplacian) problem as defined in Ref. [5] is writ-
ten for an inviscid fluid domain as

DP ¼ 0 (4)

where P is the modal amplitude of the fluid pressure. The struc-
ture coupling effect at the common fluid-structure surface is

@p=@n ¼ x2qFU � n (5)

where @p=@n is the normal derivative of the pressure, qF is the
density of the fluid, U is the modal amplitude of the structural dis-
placements, and n is the unit normal toward the exterior of the
solid domain.

The solution of the Laplace equations is obtained using the
BEM with N flat boundary elements Ei to discretize the surface
of the structure D, together with the point collocation technique as
described in the work by Pozrikidis [15]. To compute the function
f , which are the basis vectors of the fluid pressure also called pres-
sure modes, the following discretized integral equation is applied
to the centroid of each boundary element, denoted by xM

j , where
j ¼ 1;…N:

f xM
j

� �
¼ �2

XN

i¼1

@f

@n

� �
i

ð
Ei

G x; xM
j

� �
dS xð Þ

þ 2
XN

i¼1

fi

ðPV

Ei

n xð Þ � rG x; xM
j

� �h i
dS xð Þ (6)

where x is a vector defining the location of the variable “field
point,” x0 is the fixed location of the “singular point,” and G is the
free-space Green’s function in three dimensions for the Laplace
equation

G x; x0ð Þ ¼
1

4pr
(7)

where r ¼ jx� x0j.
The integrals of the terms on the right-hand side of Eq. (6) are

called the single-layer and double-layer integrals, respectively.
Setting f ðxM

j Þ ¼ fj, fi ¼ dijfj and rearranging

Aij �
1

2
dij

� �
fi ¼ Bij

@f

@n

� �
i

(8)

where dij is Kronecker’s delta, and the coefficient matrices Aij and
Bij are

Aij �
ðPV

Ei

½nðxÞ � rGðx; xM
j Þ�dSðxÞ (9)

Bij �
ð

Ei

Gðx; xM
j ÞdSðxÞ (10)

where PV denotes the principal-value integral, which applies only
to the elements that share the evaluation point x0.

The source strength of the potential is assumed to be uniform in
each panel. The coefficients of Aij exhibit a singularity 1=r, while
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the coefficients of Bij exhibit a singularity of 1=r3 which are char-
acteristic of Green’s functions of Laplace’s equation in three
dimensions. Thus, it is necessary to rely on numerical integration
to evaluate the coefficients Aij and Bij in Eqs. (9) and (10).

For a flat element, rGðx; xM
j Þ ¼ 0, because the normal nðxÞ

and the vector jx� x0j are perpendicular, thus

rG x; xM
j

� �
¼ n xð Þ � x� x0ð Þ

1

4pr3
¼ 0 (11)

This reduces the computational cost, because the coefficients of
Aij for flat boundary elements have zero elements for i ¼ j. Fur-
thermore, when solving for natural frequencies of plates, all Aij

elements are zero as all elements lie on the same plane.
In this work, the results for submerged plates, cylinders, and an

ear-bone are presented. Hexahedral and tetrahedral elements are
used to discretize the solid domain, while quadrilateral boundary
elements are used to discretize the surface of plates and triangular
boundary elements are used to discretize the surface of cylinders
and an ear bone in the BEM.

The following schemes were selected to perform the integrals
of the single layer and double layers:

(a) for quadrilateral boundary elements used in plates

Aij ¼
0 i ¼ j
wrG det J i 6¼ j

�
(12a)

where det J is the determinant of the Jacobian and

Bij ¼
7:050989wG det J i ¼ j
wG det J i 6¼ j

�
(13a)

The integration schemes applied to Aij and Bij for i 6¼ j correspond
to the Gauss–Legendre quadrature in two dimensions [16] and one
point of integration was used to reduce the computational cost.
The integration scheme applied to Bij for i ¼ j was performed
according to the numerical integration given by Kwak [9] using
two integration points.

(b) for triangular boundary elements used in cylinders and an
ear-bone in this work

Aij ¼
0 i ¼ j
wrG det J=2 i 6¼ j

�
(12b)

Bij ¼ 7:050989wGTV3 det J=2 i ¼ j
wG det J=2 i 6¼ j

�
(13b)

where GTV3 is the integration scheme with the singularity defined
at the origin of the rectangular triangle as given in the work by
Pina et al. [17]. This integration scheme uses four integration
points at (0.16385498, 0.04756957; 0.61114253, 0.17753138;
0.04756957, 0.16385498; 0.17753138, 0.61114253) with weights
0.31161231, 0.31161293, 0.31161231, and 0.31161293.

After computing the coefficients Aij and Bij, it is possible to
solve the Laplace problem, which gives a function f that corre-
sponds to the pressure modes of the structure evaluated at the cen-
ter of selected elements. The values of the pressure modes at the
BEM nodes are obtained by equally distributing the value of the
pressure mode computed for the element on the nodes in the case
of rectangular boundary elements or linear interpolation when tri-
angular boundary elements are used. Then, linear interpolation is
used to compute the pressure modes at the surface nodes of the
finer original finite element mesh.

After this, it is possible to compute the terms of the added mass
matrix M� as follows:

M�ij ¼
ð

D

qFwi�fjndD (14)

and the natural frequencies of the wet structure are obtained solv-
ing the generalized eigenproblem

X2a� x2ðIþM�Þa ¼ 0 (15)

The above equation is the reduced eigenvalue problem where mat-
rices are of size n� n, where n is the number of requested natural
frequencies kept to 5 for plates, 24 for cylinders (due to repeated
modes), and 10 for the earbone. This equation is obtained substi-
tuting Eqs. (2) and (3) in Eq. (1) and adding the added mass
matrix to the mass matrix of the “dry” structure; a is a vector of
unknown coefficients and I is a unit matrix, while the wet modes
of vibration are obtained multiplying the eigenvectors of Eqs. (1)
and (15) [18].

2.1 Summary of the Procedure

(i) Create a fine and a coarse finite element mesh. It is rec-
ommended that the nodes of the coarse mesh coincide
with the location of nodes of the fine mesh.

(ii) Solve the generalized eigenvalue problem in Eq. (1)
using the fine mesh to obtain the dry natural frequencies
and modes of vibration.

(iii) Inherit “dry modes values” from the nodes in the fine
mesh to the coinciding nodes in the coarse mesh.

(iv) Diagonalize the stiffness and mass matrices using Eqs.
(2) and (3).

(v) Use the coarse finite element mesh to create the boundary
element mesh.

(vi) Using the (coarse) boundary mesh and the dry modes
results of the coarse mesh obtains the terms Aij and Bij as
defined in Eqs. (9) and (10) using numerical integrations
(12) and (13), respectively.

(vii) Solve for pressure modes f in Eq. (8). Note that pressure
modes are assigned to the center of the elements.

(viii) Compute the pressure modes in the fine mesh using
interpolation.

(ix) Compute the terms of the added mass matrix M�ij as indi-
cated in Eq. (14). This step also requires computing the
normal of each element.

(x) Solve the “wet” generalized eigenvalue problem defined
in Eq. (15).

3 Examples

The solution of the dry natural frequencies and wet natural fre-
quencies and modes of vibration of the following structures are
presented below:

(a) Unconstrained rectangular plate as presented by Sundqvist
[19];

(b) cantilever square plate as presented by Fu and Price [11]
and Lindholm et al. [20];

(c) unconstrained cylinder as presented by Price et al [21] and
Randall [22];

(d) unconstrained cylinder as presented by Everstine [10] and
Gilroy [23];

(e) unconstrained ear-bone of a marine mammal—wet modes
are omitted.

The results using the present procedure were obtained using the
free software FAESOR by Krysl [24].

The relative error of the solution and the time reduction using
interpolation provided in the appropriate sections are defined as

error¼100%

results using coarse mesh� results using fine BEM meshð Þ
results using fine BEM mesh

(16)
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and

time reduction ¼ 100% 1� time using coarse mesh

time using fine BEM mesh

� �
(17)

3.1 Unconstrained Rectangular Plate. This example shows
the results of the natural frequencies and modes of vibration of an
unconstrained rectangular plate submerged in water. The plate has
dimensions a¼ 0.27 m and b¼ 0.1495 m along directions x and y,
thickness h¼ 0.00896 m, while the material properties are Pois-
son’s ratio �¼ 0.3, density qp¼ 7797 kg/m3, and Young’s modu-
lus E¼ 208.8 GPa. The density of the water was taken as
qw¼ 997 kg/m3.

In this section, the results of the natural frequencies and modes
of vibration of the plate were obtained using the 20-node seren-
dipity hexahedron H20 element in the finite element code FAESOR.
Table 1 shows the results of the dry frequencies obtained experi-
mentally, using the FEM code ADINA presented by Sundqvist [19],
a set of results using FAESOR and using the Rayleigh–Ritz method
[25]. The results using the present approach (FAESOR) correspond
to a model with 24 elements along the sides aligned in the x and y
directions and 1 element across the thickness. The results in the
publication by Sundqvist [19] were obtained from four models of
a quarter of the plate (each with 3947 DOF) with different combi-
nations of symmetrical and antisymmetrical boundary conditions.
The results for the first eleven modes of the unconstrained plate
were computed, but the results of the first six rigid body modes
are not included in Table 1.

The results of the natural frequencies of the unconstrained plate
submerged in water are presented in Table 2. The results obtained
in FAESOR are compared to experimental results and FEM (ADINA)
results presented by Sundqvist [19]. The first set of results using
the procedure described in this work corresponds to the model
presented in Table 1 computing the pressure modes at all ele-
ments. The last three columns in Table 2 present the results
obtained computing the pressure modes using coarser BEM
meshes. These meshes have 12� 12¼ 144, 8� 8¼ 64, and
6� 6¼ 36 identical elements. The DOF included in these bound-
ary element models can be calculated multiplying the number of
nodes in the mesh by three, because only translational DOFs are
used to calculate the pressure modes at the center of each element.
Then, the pressure modes at the nodes of the boundary elements
that coincide with the surface of the finite element mesh are
obtained by linear interpolation. Figure 1 shows the original
24� 24 finite element mesh (left) and the 6� 6 boundary element
mesh (right) used to compute the pressure modes.

The information in the tables that present results for plates and
cylinders is organized as follows: the first row shows the method
or software (SW) used to obtain the results; the second row gives
the references; the third row gives the computational time to cal-
culate the wet results; and the fourth and the fifth row give the
number of DOF in the finite element model and the DOF in the
boundary element mesh, respectively.

The norm of the added mass matrix of the last four columns in
Table 2 using FAESOR are 2.1739, 2.5127, 2.7337, and 2.8482,
while the norm of the mass matrix is 1 because stiffness and mass

matrices were transformed using the dry eigenvectors. We can
observe that the values of the added mass matrices’ norm increase
as the BEM mesh gets coarser. The error of the solutions using
interpolation in the last three columns in comparison with the
results without interpolation given in the fourth column is given in
Table 3.

It is important to notice that the reduction computational time
to obtain the results in the first column is 93% with a maximum
error of 3.8%.

The results of the modes of vibration for the submerged uncon-
strained plate are presented in Fig. 2.

3.2 Clamped Square Plate. This example shows the results
of the natural frequencies and modes of vibration of a plate in can-
tilever submerged in water. The plate has dimensions a¼ 10 m
and b¼ 10 m along directions x and y, thickness h¼ 0.238 m,
while the material properties are Poisson’s ratio �¼ 0.3, density
qp¼ 7850 kg/m3, and Young’s modulus E¼ 206 GPa. The density
of the water is qw¼ 1000 kg/m3.

Table 4 shows experimental results of the natural frequencies
of the dry plate presented by Lindholm et al. [20], results using
the Rayleigh–Ritz method [25], and results obtained using the
commercial FEM code COMSOL [26] and results using H8 elements

Table 1 Dry natural frequencies of an unconstrained plate

Method/SW Test ADINA FAESOR RITZ

Reference [19] [19] Present [25]
Time 4� 3947 215 s
DOF 12825 1600
Mode Hz Hz Hz Hz

1 641 645 650 657
2 712 716 719 737
3 1577 1585 1594 1646
4 1766 1766 1779 1821
5 2139 2115 2154 2207

Table 2 Wet natural frequencies of an unconstrained plate

Method/SW Test ADINA FAESOR FAESOR FAESOR FAESOR

Reference [19] [19] Present Present Present Present
Time 42 s 3 s 0.83 s 0.42 s
DOF FEM 4� 3947 12,825 12,825 12,825 12,825
DOF BEM 1875 507 243 147
Mode Hz Hz Hz Hz Hz Hz

1 497 489 517 500 496 500
2 575 561 581 560 548 544
3 1293 1277 1318 1279 1272 1289
4 1408 1411 1463 1432 1447 1502
5 1758 1740 1794 1726 1698 1704

Fig. 1 (Left) 24 3 24 finite element mesh used to obtain the dry
modes and (right) 6 3 6 coarse boundary element mesh used to
compute the pressure modes

Table 3 Error of the wet natural frequencies of an uncon-
strained plate using interpolation

DOF FEM 12,825 12,825 12,825
DOF BEM 507 243 147
Time reduction (%) 93 98 99
Mode Error % Error % Error %

1 �3.3 �4.1 �3.3
2 �3.6 �5.7 �6.4
3 �3.0 �3.5 �2.2
4 �2.1 �1.1 2.7
5 �3.8 �5.4 �5.0
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in FAESOR. The model in FAESOR was built using 40 elements in the
x and y directions and seven elements across the thickness.

The results of the natural frequencies of the plate in cantilever
submerged in water are presented in Tables 5 and 6. The results
obtained in FAESOR are compared to the experimental results pre-
sented by Lindholm et al. [20], the numerical results published by
Fu and Price [11], and the results obtained using the commercial
code COMSOL. The first set of results using the procedure described
in this work (FAESOR) corresponds to the model presented in
Table 4 with 40� 40 elements computing the pressure modes for
all elements. The last three columns of Tables 5 and 6 present
results computing the pressure modes using coarser boundary ele-
ment meshes (20� 20, 10� 10, and 5� 5 elements along the
length and width of the plate).

It is worth noting that the results of the first five modes of vibra-
tion of the cantilever plate obtained in COMSOL with a model hav-
ing 4030 DOF shown in Tables 5 and 6 correspond to the same
modes of vibration obtained with the present approach imple-
mented in FAESOR.

The norm of the added mass matrix of the last four columns in
Tables 5 and 6 using FAESOR are 3.2824, 3.7207, 4.4013, and
4.9874.

The modes of vibration obtained with the present approach for
the submerged plate are presented in Fig. 3.

3.3 Unconstrained Cylinder: Price and Randall. This example
shows the results of the natural frequencies and modes of vibra-
tion of an unconstrained cylinder submerged in water presented
by Price et al. [21], Randall [22], and Gilroy [23]. The cylinder
has the following dimensions: length 1.284 m, diameter 0.357 m,

wall thickness 0.003 m, and end cap thickness 0.003 m, while the
material properties are Poisson’s ratio �¼ 0.29, density
qp¼ 7750 kg/m3, and Young’s modulus E¼ 207 GPa. The density
of the water is qw¼ 1000 kg/m3.

In this section, the results of the natural frequencies and modes
of vibration of the cylinder in vacuo were obtained using the
H20 element in the finite element code FAESOR. The finite
element model was built using 32, 30, and 1 elements in the cir-
cumferential, axial, and radial directions, respectively. The

Fig. 2 Modes of vibration of a submerged unconstrained plate.
The figures correspond to mode 1 (top-left), mode 2 (top-right),
mode 3 (center-left), mode 4 (center-right), and mode 5 (bottom-
left).

Table 4 Dry natural frequencies of a clamped plate

Method Test RITZ COMSOL FAESOR

Reference [20] [25] Present Present
Time 1600 360 s
DOF 4030 10,080
Mode rad/s rad/s rad/s rad/s

1 12.30 12.81 12.84 12.74
2 30.78 31.39 31.27 30.87
3 75.46 78.53 78.53 77.77
4 99.84 100.35 99.96 98.98
5 110.57 114.21 113.65 112.18

Table 5 Wet natural frequencies of a clamped plate

Method Test Numerical COMSOL FAESOR FAESOR FAESOR FAESOR

Reference [20] [11] Present Present Present Present Present
FEM DOF 149,754 39,360 39,360 39,360 39,360
BEM DOF 5043 1323 363 108
Time 323 s 22.2 s 3.34 s 2.07 s
Mode rad/s rad/s rad/s rad/s rad/s rad/s rad/s

1 6.56 7.35 7.34 7.18 6.95 6.61 6.20
2 19.66 20.2 20.74 21.06 20.11 18.90 18.03
3 45.32 50.45 49.27 51.74 49.42 46.60 45.46
4 68.18 70.41 69.67 72.01 68.55 65.06 66.75
5 74.69 78.85 78.96 81.01 77.14 73.00 73.14

Table 6 Error of the wet natural frequencies of a cantilever
plate using interpolation

Method FAESOR FAESOR FAESOR

Reference Present Present Present
FEM DOF 39,360 39,360 39,360
BEM DOF 1323 363 108
Time reduction (%) 93 98.9 99.4
Mode % % %

1 �3.2 �7.9 �13.6
2 �4.5 �10.3 �14.4
3 �4.5 �9.9 �12.1
4 �4.8 �9.7 �7.3
5 �4.8 �9.9 �9.7

Fig. 3 Modes of vibration of a submerged cantilever plate. The
figures correspond to mode 1 (top-left), mode 2 (top-right),
mode 3 (center-left), mode 4 (center-right), and mode 5 (bottom-
left).
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boundary element mesh is built on the exterior surface of the cyl-
inder, where each square surface of the finite element mesh is rep-
resented by two triangular boundary elements.

Sections 3.3 and 3.4 including cylinders show that this method
can be applied in an easier way to any geometry with smooth
changes in its geometry. Geometries with drastic changes, such as
closed cylinders presented in this work, have to be solved more
carefully. For each of the cylinders in this work, it is possible to
see that the three surfaces of the BEM mesh, cylindrical part and
two circular plates, vibrate with discontinuities along the edges of
the cylinder. Thus, the added mass must be computed individually
for each part without taking into account the modes of vibration
of the other two parts.

Table 7 shows the results of the dry frequencies obtained exper-
imentally and using the FEM code NASTRAN presented by Price
et al. [21], by Gilroy [23] using the finite element (FE) code VAST,
results obtained using the FEM code ABAQUS using 294 S8R ele-
ments and results using FAESOR. The modes in Tables 7–9 are clas-
sified as (m, n), where m is the axial wave number and n is the
circumferential wave number. End plate modes in Tables 7–9 are
identified as e1 and e2.

Table 8 shows the results of the wet modes of the cylinder. The
results obtained with the present approach (FAESOR) are compared
again with the results given by Price et al. [21] and Gilroy [23].
The first set of results using FAESOR corresponds to the solution
computing the pressure modes on the fine mesh, where the loca-
tion of the triangular boundary elements is defined by the external
surfaces of the FEM mesh. The second set of results using FAESOR

was computed using a boundary element mesh discretizing the
cylinder in 16, 30, and 1 elements in the circumferential, axial,
and radial directions, respectively, and linear interpolation was
used to compute the pressure modes at the location of the surface
nodes of the FEM mesh. The computed wet modes are shown in
Fig. 4. The set of results using interpolation did not give the same
eigenvalues for pairs corresponding to the same mode. For this
reason, both results are included in Table 8. Good approximations
of the frequencies were obtained for modes (1, 2) and (1, 3). This
may indicate that for higher modes, finer meshes of the BEM are
needed to obtain more accurate results. This is because the change
in the BEM is too coarse to have a good representation of the
modes of vibration and pressure modes cannot be computed with
enough accuracy. Similarly, the end cap modes were obtained
from a very coarse BEM mesh which explains why the error is
higher than for modes (1, 2) and (1, 3).

Norm of the added mass matrices of the last two columns in
Table 8 are 15.2342 and 21.6817.

3.4 Unconstrained Cylinder: Everstine and Gilroy. This
example shows the results of the natural frequencies and modes of
vibration of an unconstrained cylinder submerged in water pre-
sented by Everstine [10] and Gilroy [23]. The cylinder has the fol-
lowing dimensions: length 60 m, diameter 10 m, wall thickness

0.05 m, and endcap thickness 0.003 m, while the material proper-
ties are Poisson’s ratio �¼ 0.3, density qp¼ 7900 kg/m3, and
Young’s modulus E¼ 196 GPa. The density of the water is
qw¼ 1000 kg/m3.

In this section, the same procedure as in Sec. 3.3 was used to
compute the results using FAESOR. Table 10 shows the results of
the dry frequencies presented by Everstine [10] using the FEM
code NASTRAN, by Gilroy [23] using the finite element code VAST,
results obtained using 294 S8R elements in the FEM code ABAQUS

[27] and results using FAESOR.
The results of the natural frequencies and wet modes are shown

in Tables 11 and 12.

3.5 Unconstrained Ear-Bone. This example shows the
results of the natural frequencies of an unconstrained ear-bone of
approximately 2.5 cm3. The material properties of the bone are
Poisson’s ratio �¼ 0.25, density qbone¼ 2500 kg/m3, and Young’s
modulus E¼ 20 GPa. The density of the water is qw¼ 1000 kg/m3.

Figure 5 shows the finite element and boundary element
meshes. The results of the natural frequencies in dry and wet con-
ditions are shown in Table 13. Two different finite element
meshes were used to calculate the dry natural frequencies with
387552 and 320706 tetrahedra, respectively. Some volumes of
thin bone increased thickness during the meshing process which
led to somewhat higher natural frequencies. Three results are
given for the wet natural frequencies. The first two sets of results
correspond to the models presented for the dry solution with a fine
mesh and a coarse mesh, respectively. The third set of results cor-
responds to the solution using the fine finite element mesh with its
corresponding boundary element mesh. The fourth set of results
shows the wet frequencies obtained using the fine finite element
mesh but using the boundary element mesh corresponding to the
coarse mesh. Finally, the fifth column presents the results obtained
using the coarse finite element mesh and the coarse boundary

Table 7 Dry natural frequencies of an unconstrained cylinder

Method Test FE VAST FE8 VAST FE4 ABAQUS FAESOR

Reference [21] [21] [23] [23] Present Present
Time 5122 s
FEM DOF 524,288
Mode (m, n) Hz Hz Hz Hz Hz Hz

(1,2) 194 198 196 202 197 196
(1,3) 198 204 199 208 203 208
(e1) — 209 220 235 223 237
(e2) — 217 228 240 232 245
(1,4) 336 354 341 367 359 365
(2,3) 387 404 388 439 399 391
(2,4) 403 405 439 440 425
(3,4) 565 570 655 638 584

Table 9 Error of the wet natural frequencies of an uncon-
strained cylinder using interpolation

Method FAESOR

Reference Present
Time 139 s
FEM DOF 524,288
BEM DOF 6066
Mode (m, n) Hz

(1,2) �2.5/0
(1,3) 2.9/4.8
(e1) �11.4
(e2) �8
(1,4) 8.9
(2,3) 5.6/5.6
(2,4) 3.2/10.4

Table 8 Wet natural frequencies of an unconstrained cylinder

Method Test FE Anal. VAST FAESOR FAESOR

Reference [21] [21] [23] [23] Present Present
Time 551 s 139 s
FEM DOF 524,288 524,288
BEM DOF 16,146 6066
Mode (m, n) Hz Hz Hz Hz Hz Hz

(1,2) 96 98 106 90.5 96 93.6/96.0
(1,3) 107 109 123 115 105 108/110
(e1) — — 91.8 85.3 88.9 78.8
(e2) — — 101 85.3 112 103
(1,4) 199 204 253 238 190 207/207
(2,3) 214 215 266 266 198 209/209
(2,4) 239 241 — 301 222 229/245
(3,4) 341 340 — — 308 341/375
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element mesh. Obviously, the dry solution of the finer finite ele-
ment model is more accurate than the solution of the coarser
mesh. Similarly, the wet results using the finer finite element
mesh and finer boundary element mesh are more accurate than the
other solutions.

Norm of the added mass matrices of the last two columns in
Table 13 are 6.3565, 7.8752, and 9.4289.

Another observation from Table 13 is that when the error of the
results using a coarse mesh is obtained comparing the results by
those obtained using a fine mesh, dry natural frequencies have a
larger error than the wet natural frequencies. The fourth set of
results in Table 13 was obtained using the finer finite element
mesh and the coarser boundary element mesh. This last set of
results deviates a maximum of 2.02% in comparison with the
results using the finer boundary element mesh, but the computa-
tional cost was only 5.5 h instead of 42.5 h.

4 Conclusions

The present approach to calculate the natural frequencies of
submerged structures uses a fine mesh in the FEM to solve for the
natural frequencies and modes of vibration of the structure in
vacuo, and then, an added mass matrix obtained through the use
of a coarse mesh in the BEM is used to solve for the natural fre-
quencies of the submerged structure. The use of the coarse mesh
in the BEM considerably reduced the computational cost of the
computations of natural frequencies of structures in contact with
inviscid fluid with small variations in the results. For instance,
when solving for the natural frequencies of the submerged ear
bone presented in Sec. 3.5, the results using a coarse boundary
element mesh required only 13% of the computational cost
needed to carry out the same computation using a fine boundary
element mesh, while the difference between the first five wet natu-
ral frequencies was kept within 2.02%. The reduction in the pres-
ent approach is achieved interpolating the values of the pressure
modes at the nodes of a coarse boundary element mesh to the
nodes on a finer boundary element mesh. This (a) avoids the large
number of numerical integrations in the BEM, as well as (b)
reduces the cost of solving systems of coupled linear algebraic
equations with large dense matrices whose computational cost
scales as number of unknowns cubed, i.e., very poorly. Other key
points in this work are (a) the definition of appropriate numerical
integrations schemes to solve the singular integrals characteristic
of the BEM over quadrilateral and triangular elements and (b)
surfaces of structures with angles close to 90 deg must be split
prior to interpolation, as these surfaces may not move or move in
different directions than the contiguous-normal surfaces in spe-
cific modes of vibration, and thus, interpolation must be carried
out between nodes belonging to the same surface only.

Fig. 4 Modes of vibration of the unconstrained cylinder presented by Price. Modes corre-
spond in order to the modes presented in Table 7, from left to right (1,2), (1,3), (e1), (e2), (1,4),
(2,3), (2,4), and (3,4). Plate modes have a zero pressure along the cylinder.

Table 10 Dry natural frequencies of an unconstrained cylinder

Method FEM VAST 8 FE4 ABAQUS FAESOR

Reference [10] [23] Present Present
Time 5122 s
FEM DOF 524,288
Mode (n, m) Hz Hz Hz Hz

(1,2) 2.72 2.72 2.72 2.72
(1,3) 3.90 3.85 3.91 3.95
(e1) 4.22 4.88 5.01 4.99
(e2) — — 5.22 5.11
(2,3) — — 5.96 5.86
(1,4) 7.19 7.08 7.38 7.36
(2,4) — — 8.08 7.86

Table 11 Wet natural frequencies of an unconstrained cylinder

Method Test FEM FAESOR FAESOR

Reference [10] [23] Present Present
Time 551 s 139 s
FEM DOF 524,288 524,288
BEM DOF 16,146 6066
Mode (n, m) Hz Hz Hz Hz

(1,2) 1.13 1.25 1.04 0.96/1.00
(1,3) 1.81 2.06 1.55 1.54/1.57
(e1) 1.44 2.01 1.51 1.32
(e2) — — 1.88 1.71
(1,4) 3.67 4.45 2.99 3.15/3.38
(2,3) — — 2.31 2.32/2.36
(2,4) — — 3.21 3.60/3.85

Table 12 Error of the wet natural frequencies of an uncon-
strained cylinder using interpolation

Method FAESOR

Reference Present
Time 139 s
FEM DOF 524,288
BEM DOF 6066
Mode (n, m) Hz

(1,2) �7.7/�3.8
(1,3) �0.6/1.3
(e1) �12.6
(e2) �9.0
(1,4) 5.4/13.0
(2,3) 0.4/2.2
(2,4) 12.1/19.9
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Nomenclature

a ¼ vector of unknown coefficients
a, b ¼ plate dimensions (width and length)
Aij ¼ coefficient matrix in the boundary element method
Bij ¼ coefficient matrix in the boundary element method

c ¼ vector of unknown coefficients
D ¼ surface of the structure
E ¼ Young’s modulus

Ei ¼ the ith boundary element
f ¼ basis vectors of the fluid pressure also called pressure

modes
G ¼ free-space Green’s function in three dimensions for the

Laplace equation
h ¼ plate thickness

i, j ¼ subscripts
I ¼ identity matrix
J ¼ Jacobian

K ¼ stiffness matrix
M ¼ mass matrix
mii ¼ terms of the diagonal mass matrix
m�ij ¼ terms of the added mass terms
M� ¼ added mass matrix

n ¼ unit normal toward the exterior of the solid domain
N ¼ number of flat boundary elements
P ¼ modal amplitude of the fluid pressure

PV ¼ principal-value integral
r ¼ r ¼ jx� x0j
S ¼ surface of the structure

U ¼ modal amplitude of the structural displacements
w ¼ weight in numerical integrations

x, y ¼ directions
x ¼ vector defining the location of the variable “field point”

xM
j ¼ centroid of jth boundary element

x0 ¼ fixed location of the “singular point”
dij ¼ Kronecker’s delta

@p=@n ¼ normal derivative of the pressure
r ¼ nabla operator
p ¼ ratio of a circle’s circumference to its diameter

qbone ¼ density of the bone
qF ¼ density of the fluid
qp ¼ density of the plate or structure
qw ¼ density of water
� ¼ Poisson’s ratio
W ¼ modal matrix in which columns wi are the correspond-

ing ith orthogonal eigenvectors that define the modes of
vibration

x ¼ circular frequency
X2 ¼ diagonal matrix containing the eigenvalues of the gener-

alized eigenvalue problem
0 ¼ null vector
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