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This document summarizes the operating principles of GilaElectromagnetics—a julia package im-
plementing the three dimensional electromagnetic Green function.

Introduction Convergence in norm for volume integral
methods is only guaranteed when the individual elements
of the basis implementation respects all the continuity
conditions of the quantities being approximated, as im-
posed by the kernel [1]. For electric, displacement, or
magnetic fields, this means that a great deal of care must
be taken in the selecting the partition functions and mesh
of the domain [2]. A principal advantages of the fluctu-
ating volume current method is that the integral kernel
makes no demands on continuity, allowing the use of any
set of discontinuous basis functions. In turn, this leads
to better numerical performance for inhomogeneous and
anisotropic materials [3].

I. CONCEPTUAL FOUNDATION

Notation—The formulation of macroscopic electromag-
netics employed by Gila supposes that the response prop-
erties of each body in question are defined by a linear
relative permittivity response X, and a relative perme-
ability response X,. As per standard convention, w is
used for the radial frequency k. is used for the free space
wave vector 27t/A, The letter z = /1o /€, is used for the
impedance of free space. In deference to flexibility, the
electromagnetic field and polarization current densities
are treated as the six component vectors f = {e,h} and
p = {j,m}. Throughout, capital bold letters are used to
denote linear operators, with symbols reused to denote
closely related meanings. For examples, Z is used to de-
note the constant linear operator defined by scalar mul-
tiplication by z. Both scalar and matrix multiplication,
as context dictates, are implied by juxtaposition.

A. volume integral relations

Taking i, s and t subscripts to denote the incident, scat-
tered, and total quantities—principally bare currents,
those induced by scattering, and the combination of these
two components respectively—
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defines the bound (induced or scattered) polarization
current densities produced by the total electromagnetic
field. Like the scattered electromagnetic field, the scat-
tered current thus represents a self consistent solution
of the electrodynamics in the presence of a linear scat-
terer. That such a transformation is possible follows as
a consequence of the general invertability of an operator
with a positive definite anti-symmetric component. Di-
rectly, given some computational domain Q—assumed to
include the a full set of boundary conditions—and let
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be the vacuum Maxwell operator, with VXe denoting the
vector curl divided by k.. Under these definitions the
differential formulation of the Maxwell equations then
becomes
i
(M, - X)f; = ?pi' (2)
Take G, to be the vacuum Green function, i.e. the inverse
of M,. Decomposing f as fs + f;, by using the fact that
M.f; = ip;/ko, Eq. (2) shows that

fs = Go Xft . (3)
Therefore,

Id — G, X]f, =f;
Id — XGol p, = —ikoXfo + XGop;
[Id - XGO] pt = pi + Po, (4)

where, for later convenience, we have used the identi-
ties f; = £, + (i/ko) Gop; with f, representing a possible
incoming radiative field—free solution entering through
the boundary of the computational domain—and p, =
—ikoXf,. Recall that a linear operator A, when acting
on a Hilbert space, can be decomposed into symmetric
and anti-symmetric components as A = A" + 1A%, where
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and a t superscript denotes the operator adjoint. Accord-
ingly, if A? is either positive or negative definite (A® > 0
or A? < 0), then the kernel of A is empty, and A is invert-
ible. Within the volume occupied by scattering material
the anti-symmetric component of X, and by extension the
anti-symmetric component of T = X! — G,, is positive
definite due to its physical connection with the positive



dissipation of power [4]. Based on these observations, it
follows that the (Id — XG,) appearing on the left-hand
side of (4) is also invertible, leading to the definition

W = [Id — XG,]*. (6)

One of the central use cases intended for Gila is to im-
plement iterative solution methods for evaluating Eq. (6)
for specific input vectors.

B. analytic form

The implementation of the vacuum Green function sup-
plied by Gila follows largely from its traditionally defined
analytic form. Shifting to Fourier space, this result will
be derived by “inverting” Eq. (2) at a complex frequency
w + 10, represented as (w = w + 1. Under this trans-
formation, retaining all other conventions,
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where Xy is the “cross-product” operator defined locally
at any k vector index in terms of the cartesian compo-
nents of k—assumed to be normalized by k. in all fol-
lowing expressions—as

0 —k. Ky
Xk = k. 0 —kif. (8)
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Employing block matrix inversion,
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(the norm of k) [5]. Hence, noting that through the
Fourier transform one may equally switch from Xy back
to —iV¥e  calculating the vacuum Green function in

real space amounts to calculating the inverse Fourier

transform of éz = kz & [Id - 2k®k] To carry out
this task, we will make use of the following lemma.

Jordan’s lemma—Take f : C — C to be an analytic
function on the upper half-plane

U={zeC|TJz>0},
and let
C,={zeClz=Re®® N0 € [0,n},

with R > 0 to denote a semi-circle of radius R confined
to the upper half plane. If for each R > 0 there is a
positive constant M, such that z € C, = ||f (z)|| < M,
and M, — 0 as R — oo, then

lim [ dz f(z)e'**
R—o0
CR

whenever o > 0.

Proof. To begin, notice that sin© is a concave function
on 0 € [0,7], and that sin 7 = 1. As, such
) T
(Vo € [0,1]) sin (“5) > o=
2
(vee[o.7]) sin(e) > Ze.
2 T
Thus, recalling that exp is a monotonic function on R,
if R > 0, this inequality implies that exp (—Rsin0) <
exp (—2R0/m) so that
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Transforming to polar coordinates

/ dz f(z) e'** =

C

R
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R / do ie'®f (Re'®) exp [ixR (cos O +isin 0)] .
0

Therefore, because ||ie*?f (Re*®) exp (ixR cos 0)|| < M

R

; U
/ dz f(z)e*** < —M,.
(o4
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Having established this result, the limit that R — oo can
be taken, proving the lemma. O

Let s = *5*, with the associated scalar magnitude de-
notes as s, be the wavelength scaled separation between
a spatial points r and r—leaving an overall factor of (27)?
compared to the standard definition of the inverse Fourier
transform. Supposing that ¢ is given a « k functional
dependence in the limit of large k [6] by taking partial
derivatives on s the outer product appearing in the defi-

nition of é: can be factored as

Go =1d'g, + Vg Vil (10)
where
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Vg" is the divergence operator, and Id" is the operator
transforming a scalar field into a three dimensional vector
field, for some index x, by the rule

f(x) 0 0
d'f(x)— | 0 f(x) 0 |. (12)
0 0 f(x)



Because we have defined G, = [(k? — ?)1d —k ®K] -
by making the appropriate associations for representa-
tions of operators in Fourier space,

[VEkewke — °1d] G, = Id. (13)
Hence,
2GS = vkevke (IdT g, + VI;OgOV{;”) 1 (14)
G. = 1 (VEevkld'g, —1d),

=a
where in going from the second to the third line we have
used the fact that V¥eV o = Vi°Vke = 0. For imple-
mentation purposes, it may also be helpful to note that
for a complex frequency Eq. (4) becomes

(Vl‘°)2 i% (Vk°)3

Id + zX) — zX a c Id"

( +Z« ) ya _152 (V}fo)g (VEO)Z go pt
=p; + Po. (15)

II. INTEGRAL FORMS

Appealing to a reformulation in terms of differential
forms, or the careful use of vector calculus identities, the
VL‘O Vl‘O operator appearing above can be used to trans-
form the volume integrals implicit in Eq. (14) into surface
integrals. Applying this transformation

a; [VEVEIdg, | of =) (ﬁh x 5) : (ﬁk x {)
h.k

ﬁély][é go (r8 —rd + (v8 —vd)). (16)

where a and b are used as volume labels, m and 1 are used
as cube labels, j and i are used as direction labels, and
N, and Ny are the faces of the target cube and source
cube respectively. Using the cube face storage conven-
tion describe in sec. V, using the face pair numbering
6 * (source face index — 1) + target face index, the face
contributions for a given source and target cube pair are

ii = {15, —16,—21, 22, 29, —30, —35, 36}
ji={-13,14,19, —20}

ki = {—25, 26,31, —32}

ij={-3,4,9,—10}
j=1{1,-2,-7,8,29,—30,—35, 36}

kj = {—27,28, 33, —34}

ik ={-5,6,11,—12}

jk = {—17,18,23,—24}

kk ={1,—-2,—-7,8,15,—16, 21,22} . (17)

To reproduce the physics of non-local response, we im-
plement the model proposed in [7]. To that end, we assign

a charge to each cubic cell, through the domain function
ca. The interaction between charges is then

c? Cef, (18)

where C is integration Kernel that corresponds to the
Coulomb potential. Using that
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successive applications of the divergence theorem allow
one to express the volume integrals as surface integrals.
Defining

X® X
D (x) =k? o (20)
we have
c? Ceft = —ch al

hk
##ﬁWD(r%—r{‘—f—(v%—vf)yﬁk (21)
M

Like before, a and b denote the cuboid where the charge
is located, n and 1 are cube/voxel labels, r% and ri are
the positions of the centers of the cubes, v2 and v{ are
the positions to the integration surfaces with respect to
the center of each cube, and i, and Ny are the normal
vectors to the integration surfaces. I'm not sure that the
notation is how you best like it. Also, this paragraph is
redundant, but I'm just making sure that I understand
everything.

Additionally, the interaction between cubic charges
and currents is given by

edqf = k. V* Vi qf

= _ko Z (q{l ) ﬁh) # V111)1 (1'21 - r{l - V{l) ) (22)
h h

where VP (r) is the electrostatic potential at r due to the
homogeneous charge distribution in the parallelepiped la-
beled by b and m. Its analytical expression can be found
in [8]. The formula therein expresses the coordinates of
r from the (0,0,0) vertex. In terms of the coordinates
with respect to the center of the cubic cell b, m, we have

1

z
Vo= ) Plxiysze) [xiy]- arctanh ( K )

1,j,k=0 Tijk
x? Yjzi
——tarctan | ——— | |, (23)
2 XiTijk
where Pftl’t%ts} permutes cyclically the variables t; in

the expression upon which it acts, in square brackets. In
Eq. (23), ri = r + (—1)(*Y1 where the spatial compo-
nents of 1 are the lengths of the parallelepiped in each

direction, and rij = 4 /x? erjQ +2z2.



IIT. USER INTERFACE

Gila works exclusively with rectangular cuboids, re-
ferred alternatively as volumes or domains, composed of
small cubic cells.

IV. COMPUTATIONAL MODEL

! need to investigate SVD tradeoff + CUDA multipli-
cation speed up.

V. CONVENTIONS

- Cube faces.

The relative separation between the centers of a
pair of cubes is specified by grid coordinates. In addition
to this information, to compute the surface integrals
described above, “local” relative separation information
between pairs of faces of the pair of cubes is also
need. This information is generated by the cubeFaces
function in the GilaCirc module. The storage convention
reference a cube in the upper-forward-right quadrant
of a set of Cartesian vectors, using U and L labels to
denote “upper” and “lower” coordinate values relative
to a given plane and associated normal direction.

cat(yzL, yzU, xzL, xzU, xyL, xyU, dims = 3)

Point specifications for each face follow a counter-
clockwise convention when viewed along the positive
normal axis of the corresponding plane.

- Green function interaction elements.

The storage format of the Green function in-
teraction elements for every pair of cubes is
[ii, ji,%il%; (35, 33, kj17); [ik, ik, kk]T]  during  the
writing process to facilitate numbering, debugging, and
possible future extensions. However, by reciprocity, the
inclusion of both transpose element pairs is redundant,
even for asymmetrically sized cubes. Hence, once the
writing process in terminate, the storage format is
condensed to [[ii, jj,kk]"; [i], ik, jk]];

- Scaling conventions.

Vectors in Gila are taken to be coefficients defined
relative to a unit strength basis of cuboids; rows are
taken to be coeflicients defined relative to the associated
linear functionals mapping a unique cuboid and direction
combination to unity. Hence, when used in integral
expressions, the use of vectors leads to length scaling
proportionalities, while the use of linear functionals
causes inverse length scaling proportionalities.

Based on this convention, the rectangular surface
integrals occurring in Eq. (16) scale inversely to the
characteristic length opposite to the face being inte-
grated over in target cuboid, and proportionally to
the characteristic lengths of the face being integrated
over in the source cuboid. However, because the Green
function kernel expression of Eq. (16) themselves scale
proportionally to the characteristic length opposite
to the face being integrated over in both the source
and target, the overall scaling of Eq. (16) is inversely
proportional to the volume of the source cuboid in the
absence of singular contributions.

There is also a potential for confusion when ob-
serving that the weak singular integrals calculated via
DIRECTEFN are scaled by inverse volume of the cuboid.
As opposed to the Gaussian quadrature subroutine
used elsewhere, in order to provide greater flexibility,
DIRECTFN works with the relative unit length scales,
as opposed to normalizing all integrals to a fixed length.
This choice causes the results of DIRECTFN to scale
proportionally to the product of the source and target
face areas. Multiplication by the inverse characteristic
volume of the cuboid is thus a result of the Gila linear
functional convention, resulting in the same scaling
characteristics described above.

VI. GPU COMMANDS

- Get GPU operating information.

terminal command: nvidia-smi

1. Toeplitz and Circulant Forms

In the main text, we state that the translation invariance
of the Green function results in the P matrix having
a symmetric block Toeplitz form. Later, we then ex-
panded this matrix to a block circulant form to further
aid calculations. In this appendix, we provide additional
details explaining these two statements. We begin
with the symmetric block Toeplitz form. In our con-
struction of the problem, there are five levels of indexing:

1. The two body indices (self and external interac-
tions).

2. The {x,y,z} the voxel number indices of the
two basis functions with the cuboid girds (one index pair
for each Cartesian coordinate).

3. The {{75} pair of Cartesian direction indices.
The qualification of symmetric block Toeplitz means

that at each level of indexing the matrix subblocks have
a Toeplitz form. For example, starting at the highest



level of indexing for a particular self body interaction,
the matrix blocks are indexed by the x; X, voxel values.
These matrix blocks have a Toeplitz form

X11 X12 X13 X14
Xo1 X11 X12 X
P _ 21 X11 X12 X13 ) (24)
X31 X21 X11 X12
X41 X31 X21 X11

(in this example we consider a 4 x 4 x 4 cubiod grid.) If
we choose one of these matrices, for instance x14, then
the y index subblocks are again Toeplitz

Yii Yiz Yis Yii
Y21 Yil Yis Yis
Y3l Ysi Yil Yib
Yii Y3 Y1 Yil

X14 =

Going deeper, the z index subblock of a given y block
also show this same structure

12;14 12514 12;14 12514

Zlzi14 2}22;14 2}9;14 Z12i14
91142 = 2%21;14 Z}21;14 Z%22;14 21132);14 s
:1))%:14 %%‘14 %%:14 1122'14
Zy0 Z31 Zol 7y

as do the 3 x 3 matrices associated with each z block.
At each level, the Toeplitz blocks can be embedded in
circulant blocks by treating either first or last element
as a reflective boundary. The meaning of this statement
again becomes clear in example. Taking P as in (24), at
the outermost level the embedded matrix becomes

X11 X12 X13 X14 [Xaa X41 X31 X21
X21 X11 X12 X13 | X14 Xaa X41 X31
X31 X21 X11 X12 | X13 X14 Xaa X41
X41 X31 X21 X11 | X12 X13 X14 Xaa

T =
¢ Xaa X41 X31 X21 | X11 X12 X13 X13 ?

X14 Xaa X41 X31 | X21 X11 X12 X13

X13 X14 Xaa X41 | X31 X21 X11 X12
X12 X13 X14 Xaa | X41 X31 X21 X11

(25)
where the xi; entries that appear are also embedded in
circulant subblocks (expanded forms of the identically
named xyj as used previously). Unlike the block Toeplitz
form, which is not Toeplitz matrix, the block circulant
form is circulant. The usefulness of this procedure stems
from the special properties of circulant matrices. Specif-
ically, the eigenvectors are the Fourier vectors and the
eigenvalues are

Aj=cCo+cCno1wj+ cn,gw)? + ...+ clw}‘*1, (26)
where w; = e?™/M and c; are the entires along a single
row of the circulant matrix. This lets us the expand the
individual tensor components of the matrix, (N$ + N%)x
(N5 +NE) x (N5 +N%) with s standing for the source
object and t the target, as

PL = F* (F(c)) F, (27)

where F is the unnormalized Fourier transform, e—274/m
convention, and c¢ is the first column. Using the fast
Fourier transform algorithm, these operation are much
more computationally efficient than standard matrix
multiplication, taking the number of actions that needs
to be performed from (NXNUNZ)2 to approximately
NxNyN;1g (NxNyN.). The basic premise of the fast
Fourier transform is discussed in the next appendix.

2. Removal of embedding overhead

Given the circulant embedding described above, the op-
eration that must generally be carried out to compute
the action of G, on a source vector s is

PF!G,F_Es, (28)

where F. is the Fourier transform operator in the
“circulant space”, G, is the Fourier transform of the first
column of Go, E is the embedding operation, and P is
the projection operation. The computational overhead
that would seem to be implied by the embedding and
projection operations can be removed by treating these

operations in the Fourier basis.

Suppose that the dimension of s is m, and let cx
denote the Fourier transform coefficients of the step
function on the first n dimensions of the circulant space.
Take s. to be the vector obtained by repeating s. In
matrix form, the Eq.(28) is equivalent to

3. Fast Fourier Transform

The N roots of unity of the exponential function furnish
all irreducible representations of the cyclic group Cy.
For N discrete spacings, they also provide the possible
values of the Fourier kernel. This connection gives
the matrix form of the Fourier transformation special
properties that can be used to dramatically improve the
efficiency of computations.

There are two ways to think about the the matrix
form of the Fourier transform for N cubes. First, it is
the character table of Cn: the element at index {l, m}
is €2t (tm)/N "where 1 and m range from 0 to N — 1.
As such, the columns and rows of the Fourier transform
matrix (DFT) are orthogonal under the conjugate inner
product, and by including a prefactor of 1/v/N become
orthonormal. It is also the projection onto the different
irreducible representations. As rotations are abelian,
any irreducible representation is a one dimensional
subspace, and so the total space of functions over N
discrete points can be decomposed into these vectors.
The matrix of the Fourier transform is the collection of
inner products with these vectors.



The central idea of the fast Fourier transform (FFT) is
that if N = 2™ then there is a set of group morphism
m; equating representations on Nj with representations
on Niy; & Niy1 where Ny 1 = N;j/2. The existence
of these transformations can be understood in two
steps. Begin by picturing the N sampling points of a
vector as the N roots of unity in the complex plane,
and subdivide the collection of points into two sets by
selections alternating. Take the inner product with the
same irreducible vector on each of the these subspaces,
say e2™m/(N/2) " By then multiplying the result from
one of the two subspaces with any rotation of the
group e™™/(N/2) gmaller than a e'™, effectively the
inner product with e>™*(m)/N " Using this basis and one
shifted by 7t, which must be distinct, all vectors of the
larger group are accounted for. In matrix form

Fip1= v D (0 o,
Ins2 —D 0 K

where 0 is the matrix of odd-even permutations, and D a
diagonal matrix with entries e?™™/N forn < (N —1) /2.

The complete algorithm wuses factorization recur-
sively. With careful consideration, the form of the self
referential o matrix can be determined without the
need for direct computation, meaning that prior to

multiplying with the D matrices the algorithm is linear.
For a vector of size 2%, 1 steps are then required to form
the proper Fourier transformed vector, each requiring N
multiplications. As a result, the number of steps needed
by the algorithm is

FFT o N1ny (N),

in the limit of large N. Note however that this relies on
specific vector sizes. For most FFT libraries similar algo-
rithms are implemented if n is any combination of powers
of the primes {2, 3,5, 7} with increasing performance for
smaller repeated primes (ideally 2™).

4. §Particulars

e In order to simplify the Green function action,
Gla enforces that the number of cells in each Cartesian
dimension of a volume be divisible by two. If the user
enters an odd cell number, one additional cell is added,
and the cell scale is redefined.

e [ have flipped the information storage convention
for the reduced green function when the number of
target cells is larger than the number of source cells.
After the first element, the entries correspond to the
target volume loop, stored in standard ascending, rather
than reversed order.
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